新高考数学一轮复习学案第5章第3讲 第1课时 两角和与差的正弦、余弦和正切公式(含解析)
展开一、知识梳理
1.两角和与差的正弦、余弦和正切公式
sin(α±β)=sin_αcs__β±cs_αsin__β;
cs(α∓β)=cs_αcs__β±sin_αsin__β;
tan(α±β)=eq \f(tan α±tan β,1∓tan αtan β)eq \b\lc\(\rc\)(\a\vs4\al\c1(α±β,α,β均不为kπ+\f(π,2),k∈Z)).
2.二倍角的正弦、余弦、正切公式
sin 2α=2sin_αcs__α;
cs 2α=cs2α-sin2α=2cs2α-1=1-2sin2α;
tan 2α=eq \f(2tan α,1-tan2α)eq \b\lc\(\rc\)(\a\vs4\al\c1(α,2α均不为kπ+\f(π,2),k∈Z)).
3.三角函数公式的关系
常用结论
四个必备结论
(1)降幂公式:cs2α=eq \f(1+cs 2α,2),sin2α=eq \f(1-cs 2α,2).
(2)升幂公式:1+cs 2α=2cs2α,1-cs 2α=2sin2α.
(3)tan α±tan β=tan(α±β)(1±tan αtan β),
1+sin 2α=(sin α+cs α)2,
1-sin 2α=(sin α-cs α)2,
sin α±cs α=eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(α±\f(π,4))).
(4)辅助角公式
asin x+bcs x=eq \r(a2+b2)sin (x+φ),其中tan φ=eq \f(b,a).
二、教材衍化
1.若cs α=-eq \f(4,5).α是第三象限的角,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=________.
解析:因为α是第三象限角,所以sin α=-eq \r(1-cs2α)=-eq \f(3,5),所以sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=-eq \f(3,5)×eq \f(\r(2),2)+eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,5)))×eq \f(\r(2),2)=-eq \f(7\r(2),10).
答案:-eq \f(7\r(2),10)
2.sin 347°cs 148°+sin 77°cs 58°=________.
解析:sin 347°cs 148°+sin 77°cs 58°
=sin(270°+77°)cs(90°+58°)+sin 77°cs 58°
=(-cs 77°)·(-sin 58°)+sin 77°cs 58°
=sin 58°cs 77°+cs 58°sin 77°
=sin(58°+77°)=sin 135°=eq \f(\r(2),2).
答案:eq \f(\r(2),2)
3.化简:eq \f(sin 50°,sin 65°·\r(1-cs 50°))=________.
解析:原式=eq \f(cs 40°,cs 25°\r(1-cs 50°))
=eq \f(cs 40°,cs 25°·\r(2)sin 25°)=eq \f(cs 40°,\f(\r(2),2)sin 50°)=eq \r(2).
答案:eq \r(2)
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)两角和与差的正弦、余弦公式中的角α,β是任意角.( )
(2)两角和与差的正切公式中的角α,β是任意角.( )
(3)cs 80°cs 20°-sin 80°sin 20°=cs(80°-20°)=cs 60°=eq \f(1,2).( )
(4)公式tan(α+β)=eq \f(tan α+tan β,1-tan αtan β)可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )
(5)存在实数α,使tan 2α=2tan α.( )
答案:(1)√ (2)× (3)× (4)× (5)√
二、易错纠偏
eq \a\vs4\al(常见,误区)eq \b\lc\|(\a\vs4\al\c1( ))(1)不会用公式找不到思路;
(2)不会合理配角出错.
1.sin 15°+sin 75°的值是________.
解析:sin 15°+sin 75°=sin 15°+cs 15°=eq \r(2)sin(15°+45°)=eq \r(2)sin 60°=eq \f(\r(6),2).
答案:eq \f(\r(6),2)
2.若tan α=3,tan(α-β)=2,则tan β=________.
解析:tan β=tan[α-(α-β)]=eq \f(tan α-tan(α-β),1+tan α·tan(α-β))
=eq \f(3-2,1+3×2)=eq \f(1,7).
答案:eq \f(1,7)
第1课时 两角和与差的正弦、余弦和正切公式
考点一 和差公式的直接应用(基础型)
复习指导eq \b\lc\|(\a\vs4\al\c1( ))1.会用向量的数量积推导出两角差的余弦公式.
2.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系.
核心素养:逻辑推理、数学运算
1.已知sin α=eq \f(3,5),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),tan(π-β)=eq \f(1,2),则tan(α-β)的值为( )
A.-eq \f(2,11) B.eq \f(2,11)
C.eq \f(11,2) D.-eq \f(11,2)
解析:选A.因为sin α=eq \f(3,5),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),
所以cs α=-eq \r(1-sin2α)=-eq \f(4,5),
所以tan α=eq \f(sin α,cs α)=-eq \f(3,4).
因为tan(π-β)=eq \f(1,2)=-tan β,
所以tan β=-eq \f(1,2),
则tan(α-β)=eq \f(tan α-tan β,1+tan αtan β)=-eq \f(2,11).
2.(2019·高考全国卷Ⅱ)已知α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),2sin 2α=cs 2α+1,则sin α=( )
A.eq \f(1,5) B.eq \f(\r(5),5)
C.eq \f(\r(3),3) D.eq \f(2\r(5),5)
解析:选B.由2sin 2α=cs 2α+1,得4sin αcs α=1-2sin2α+1,即2sin αcs α=1-sin2α.因为α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),所以cs α=eq \r(1-sin2 α),
所以2sin αeq \r(1-sin2 α)=1-sin2 α,
解得sin α=eq \f(\r(5),5),故选B.
3.已知α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),sin α=eq \f(\r(5),5).
(1)求sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))的值;
(2)求cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,6)-2α))的值.
解:(1)因为α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),sin α=eq \f(\r(5),5),
所以cs α=-eq \r(1-sin2α)=-eq \f(2\r(5),5),
故sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))=sin eq \f(π,4)cs α+cs eq \f(π,4)sin α
=eq \f(\r(2),2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2\r(5),5)))+eq \f(\r(2),2)×eq \f(\r(5),5)=-eq \f(\r(10),10).
(2)由(1)知sin 2α=2sin αcs α=2×eq \f(\r(5),5)×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(2\r(5),5)))=-eq \f(4,5),cs 2α=1-2sin2α=1-2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(5),5)))eq \s\up12(2)=eq \f(3,5),所以cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,6)-2α))=cs eq \f(5π,6)cs 2α+sin eq \f(5π,6)sin 2α=eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(3),2)))×eq \f(3,5)+eq \f(1,2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,5)))=-eq \f(4+3\r(3),10).
eq \a\vs4\al()
利用三角函数公式时应注意的问题
(1)首先要注意公式的结构特点和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.
(2)应注意与同角三角函数基本关系、诱导公式的综合应用.
(3)应注意配方法、因式分解和整体代换思想的应用.
考点二 三角函数公式的逆用与变形应用(基础型)
eq \a\vs4\al(复习,指导)eq \b\lc\|(\a\vs4\al\c1( ))能运用三角函数公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆).
核心素养:数学运算
(1)在△ABC中,若tan Atan B=tan A+tan B+1,则cs C的值为( )
A.-eq \f(\r(2),2) B.eq \f(\r(2),2)
C.eq \f(1,2) D.-eq \f(1,2)
(2)(2018·高考全国卷Ⅱ)已知sin α+cs β=1,cs α+sin β=0,则sin(α+β)=________.
【解析】 (1)由tan Atan B=tan A+tan B+1,可得eq \f(tan A+tan B,1-tan Atan B)=-1,
即tan(A+B)=-1,又(A+B)∈(0,π),
所以A+B=eq \f(3π,4),则C=eq \f(π,4),cs C=eq \f(\r(2),2).
(2)因为sin α+cs β=1,cs α+sin β=0,
所以sin2α+cs2β+2sin αcs β=1 ①,
cs2α+sin2β+2cs αsin β=0 ②,
①②两式相加可得sin2α+cs2α+sin2β+cs2β+2(sin αcs β+cs αsin β)=1,
所以sin(α+β)=-eq \f(1,2).
【答案】 (1)B (2)-eq \f(1,2)
eq \a\vs4\al()
(1)三角函数公式活用技巧
①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;
②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.
(2)三角函数公式逆用和变形使用应注意的问题
①公式逆用时一定要注意公式成立的条件和角之间的关系;
②注意特殊角的应用,当式子中出现eq \f(1,2),1,eq \f(\r(3),2),eq \r(3)等这些数值时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.
1.(1-tan215°)cs215°的值等于( )
A.eq \f(1-\r(3),2) B.1
C.eq \f(\r(3),2) D.eq \f(1,2)
解析:选C.(1-tan215°)cs215°=cs215°-sin215°=cs 30°=eq \f(\r(3),2).
2.已知sin 2α=eq \f(1,3),则cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4)))=( )
A.-eq \f(1,3) B.eq \f(1,3)
C.-eq \f(2,3) D.eq \f(2,3)
解析:选D.cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4)))=eq \f(1+cs\b\lc\(\rc\)(\a\vs4\al\c1(2α-\f(π,2))),2)=eq \f(1,2)+eq \f(1,2)sin 2α=eq \f(1,2)+eq \f(1,2)×eq \f(1,3)=eq \f(2,3).
3.(一题多解)eq \r(3)cs 15°-4sin215°cs 15°=( )
A.eq \f(1,2) B.eq \f(\r(2),2)
C.1 D.eq \r(2)
解析:选D.法一:eq \r(3)cs 15°-4sin215°cs 15°=eq \r(3)cs 15°-2sin 15°·2sin 15°cs 15°=eq \r(3)cs 15°-2sin 15°·sin 30°=eq \r(3)cs 15°-sin 15°=2cs(15°+30°)=2cs 45°=eq \r(2).故选D.
法二:因为cs 15°=eq \f(\r(6)+\r(2),4),sin 15°=eq \f(\r(6)-\r(2),4),所以eq \r(3)cs 15°-4sin215°·cs 15°=eq \r(3)×eq \f(\r(6)+\r(2),4)-4×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(6)-\r(2),4)))eq \s\up12(2)×eq \f(\r(6)+\r(2),4)=eq \f(\r(6)+\r(2),4)×(eq \r(3)-2+eq \r(3))=eq \f(\r(6)+\r(2),4)×(2eq \r(3)-2)=eq \r(2).故选D.
考点三 三角公式的灵活应用(综合型)
eq \a\vs4\al(复习,指导)eq \b\lc\|(\a\vs4\al\c1( ))三角公式的灵活应用实质是三角恒等变换,恒等变换前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.
角度一 三角函数公式中变“角”
(2020·黑龙江大庆实验中学考前训练)已知α,β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,4),π)),sin(α+β)=-eq \f(3,5),sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(24,25),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=________.
【解析】 由题意知,α+β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2),2π)),sin(α+β)=-eq \f(3,5)<0,所以cs(α+β)=eq \f(4,5),因为β-eq \f(π,4)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),\f(3π,4))),所以cseq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=-eq \f(7,25),cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=cseq \b\lc\[\rc\](\a\vs4\al\c1((α+β)-\b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))))=cs(α+β)cseq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))+sin(α+β)sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=-eq \f(4,5).
【答案】 -eq \f(4,5)
角度二 三角函数公式中变“名”
求值:eq \f(1+cs 20°,2sin 20°)-sin 10°eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,tan 5°)-tan 5°)).
【解】 原式=eq \f(2cs210°,2×2sin 10°cs 10°)-sin 10°eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(cs 5°,sin 5°)-\f(sin 5°,cs 5°)))
=eq \f(cs 10°,2sin 10°)-sin 10°·eq \f(cs25°-sin25°,sin 5°cs 5°)
=eq \f(cs 10°,2sin 10°)-sin 10°·eq \f(cs 10°,\f(1,2)sin 10°)
=eq \f(cs 10°,2sin 10°)-2cs 10°=eq \f(cs 10°-2sin 20°,2sin 10°)
=eq \f(cs 10°-2sin(30°-10°),2sin 10°)
=eq \f(cs 10°-2\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)cs 10°-\f(\r(3),2)sin 10°)),2sin 10°)=eq \f(\r(3)sin 10°,2sin 10°)=eq \f(\r(3),2).
eq \a\vs4\al()
三角函数公式应用的解题思路
(1)角的转换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=eq \f(π,2),eq \f(α,2)=2×eq \f(α,4)等.
(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
[提醒] 转化思想是实施三角恒等变换的主导思想,恒等变换前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.
求4sin 20°+tan 20°的值.
解:原式=4sin 20°+eq \f(sin 20°,cs 20°)
=eq \f(2sin 40°+sin 20°,cs 20°)=eq \f(2sin (60°-20°)+sin 20°,cs 20°)
=eq \f(\r(3)cs 20°-sin 20°+sin 20°,cs 20°)=eq \r(3).
[基础题组练]
1.计算-sin 133°cs 197°-cs 47°cs 73°的结果为( )
A.eq \f(1,2) B.eq \f(\r(3),3)
C.eq \f(\r(2),2) D.eq \f(\r(3),2)
解析:选A.-sin 133°cs 197°-cs 47°cs 73°
=-sin 47°(-cs 17°)-cs 47°sin 17°
=sin(47°-17°)=sin 30°=eq \f(1,2).
2.(2020·福建五校第二次联考)已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=eq \f(4,5),则sin 2α=( )
A.eq \f(1,5) B.-eq \f(1,5)
C.eq \f(7,25) D.-eq \f(7,25)
解析:选C.法一:因为cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=eq \f(4,5),所以sin 2α=sineq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2)-2\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))))=cs 2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=2cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))-1=2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,5)))eq \s\up12(2)-1=eq \f(7,25).故选C.
法二:因为cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=eq \f(4,5),所以eq \f(\r(2),2)(cs α+sin α)=eq \f(4,5),所以cs α+sin α=eq \f(4\r(2),5),平方得1+sin 2α=eq \f(32,25),得sin 2α=eq \f(7,25).故选C.
3.(2020·陕西榆林模拟)已知eq \f(cs θ,sin θ)=3cs(2π+θ),|θ|
C.eq \f(4\r(2),9) D.eq \f(2\r(2),9)
解析:选C.因为eq \f(cs θ,sin θ)=3cs(2π+θ),所以eq \f(cs θ,sin θ)=3cs θ.
又|θ|
故选C.
4.(2020·武汉模拟)已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))=eq \f(1,4),则cs x+cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))=( )
A.eq \f(\r(3),4) B.-eq \f(\r(3),4)
C.eq \f(1,4) D.±eq \f(\r(3),4)
解析:选A.因为cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))=eq \f(1,4),
所以cs x+cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))=cs x+eq \f(1,2)cs x+eq \f(\r(3),2)sin x=
eq \r(3)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2)cs x+\f(1,2)sin x))=eq \r(3)cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))=eq \r(3)×eq \f(1,4)=eq \f(\r(3),4).
故选A.
5.(2020·湘东五校联考)已知sin(α+β)=eq \f(1,2),sin(α-β)=eq \f(1,3),则lgeq \r(5)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(tan α,tan β)))eq \s\up12(2)等于( )
A.2 B.3
C.4 D.5
解析:选C.因为sin(α+β)=eq \f(1,2),sin(α-β)=eq \f(1,3),所以sin αcs β+cs αsin β=eq \f(1,2),sin αcs β-cs αsin β=eq \f(1,3),所以sin αcs β=eq \f(5,12),cs αsin β=eq \f(1,12),所以eq \f(tan α,tan β)=5,所以lgeq \r(5)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(tan α,tan β)))eq \s\up12(2)=lgeq \r(5)52=4.故选C.
6.(2020·洛阳统考)已知sin α+cs α=eq \f(\r(5),2),则cs 4α=________.
解析:由sin α+cs α=eq \f(\r(5),2),得sin2α+cs2α+2sin αcs α=1+sin 2α=eq \f(5,4),所以sin 2α=eq \f(1,4),从而cs 4α=1-2sin22α=1-2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)))eq \s\up12(2)=eq \f(7,8).
答案:eq \f(7,8)
7.(2020·甘肃、青海、宁夏联考改编)若tan(α+2β)=2,tan β=-3,则tan(α+β)=________,tan α=________.
解析:因为tan(α+2β)=2,tan β=-3,
所以tan(α+β)=tan(α+2β-β)=eq \f(tan(α+2β)-tan β,1+tan(α+2β)tan β)
=eq \f(2-(-3),1+2×(-3))=-1.tan α=tan(α+β-β)=eq \f(-1-(-3),1+(-1)×(-3))=eq \f(1,2).
答案:-1 eq \f(1,2)
8.已知sin(α-β)cs α-cs(β-α)sin α=eq \f(3,5),β是第三象限角,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(β+\f(5π,4)))=________.
解析:依题意可将已知条件变形为
sin[(α-β)-α]=-sin β=eq \f(3,5),所以sin β=-eq \f(3,5).
又β是第三象限角,因此有cs β=-eq \f(4,5),
所以sineq \b\lc\(\rc\)(\a\vs4\al\c1(β+\f(5π,4)))=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(β+\f(π,4)))
=-sin βcs eq \f(π,4)-cs βsin eq \f(π,4)=eq \f(7\r(2),10).
答案:eq \f(7\r(2),10)
9.已知tan α=2.
(1)求taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))的值;
(2)求eq \f(sin 2α,sin2α+sin αcs α-cs 2α-1)的值.
解:(1)taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(tan α+tan \f(π,4),1-tan αtan \f(π,4))=eq \f(2+1,1-2×1)=-3.
(2)eq \f(sin 2α,sin2α+sin αcs α-cs 2α-1)=
eq \f(2sin αcs α,sin2α+sin αcs α-2cs2α)=eq \f(2tan α,tan2α+tan α-2)=eq \f(2×2,4+2-2)=1.
10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5),-\f(4,5))).
(1)求sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+π))的值;
(2)若角β满足sin(α+β)=eq \f(5,13),求cs β的值.
解:(1)由角α的终边过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5),-\f(4,5))),得sin α=-eq \f(4,5),所以sin(α+π)=-sin α=eq \f(4,5).
(2)由角α的终边过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5),-\f(4,5))),得cs α=-eq \f(3,5),
由sin(α+β)=eq \f(5,13),得cs(α+β)=±eq \f(12,13).
由β=(α+β)-α得
cs β=cs(α+β)cs α+sin(α+β)sin α,
所以cs β=-eq \f(56,65)或cs β=eq \f(16,65).
[综合题组练]
1.(2020·河南百校联盟联考)已知α为第二象限角,且tan α+tan eq \f(π,12)=2tan αtan eq \f(π,12)-2,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(5π,6)))等于( )
A.-eq \f(\r(10),10) B.eq \f(\r(10),10)
C.-eq \f(3\r(10),10) D.eq \f(3\r(10),10)
解析:选C.tan α+tan eq \f(π,12)=2tan αtan eq \f(π,12)-2⇒eq \f(tan α+tan \f(π,12),1-tan αtan \f(π,12))=-2⇒taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))=-2,因为α为第二象限角,所以sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))=eq \f(2\r(5),5),cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))=-eq \f(\r(5),5),则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(5π,6)))=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,6)))=-sineq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))-\f(π,4)))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))sin eq \f(π,4)-sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))cs eq \f(π,4)=-eq \f(3\r(10),10).
2.(创新型)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m=2sin 18°,若m2+n=4,则eq \f(m\r(n),2cs227°-1)=( )
A.8 B.4
C.2 D.1
解析:选C.因为m=2sin 18°,m2+n=4,
所以n=4-m2=4-4sin218°=4cs218°.
所以eq \f(m\r(n),2cs227°-1)=eq \f(2sin 18°\r(4cs218°),2cs227°-1)=eq \f(4sin 18°cs 18°,2cs227°-1)=eq \f(2sin 36°,cs 54°)=eq \f(2sin 36°,sin 36°)=2.故选C.
3.已知0<α
eq \f(sin2 α+sin 2α,cs2α+cs 2α)=eq \f(sin2α+2sin αcs α,2cs2α-sin2α)
=eq \f(tan2α+2tan α,2-tan2α)=eq \f(\f(9,16)+\f(6,4),2-\f(9,16))=eq \f(33,23).
答案:7 eq \f(33,23)
4.设α,β∈[0,π],且满足sin αcs β-cs αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为________.
解析:由sin αcs β-cs αsin β=1,得sin(α-β)=1,
又α,β∈[0,π],所以α-β=eq \f(π,2),
所以eq \b\lc\{(\a\vs4\al\c1(0≤α≤π,,0≤β=α-\f(π,2)≤π,))即eq \f(π,2)≤α≤π,
所以sin(2α-β)+sin(α-2β)
=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2α-α+\f(π,2)))+sin(α-2α+π)
=cs α+sin α=eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4))).
因为eq \f(π,2)≤α≤π,所以eq \f(3π,4)≤α+eq \f(π,4)≤eq \f(5π,4),
所以-1≤eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))≤1,
即取值范围为[-1,1].
答案:[-1,1]
5.已知函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,12))),x∈R.
(1)求feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,4)))的值;
(2)若cs θ=eq \f(4,5),θ∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),求feq \b\lc\(\rc\)(\a\vs4\al\c1(2θ-\f(π,3)))的值.
解:(1)feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,4)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,4)+\f(π,12)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,6)))=-eq \f(1,2).
(2)feq \b\lc\(\rc\)(\a\vs4\al\c1(2θ-\f(π,3)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2θ-\f(π,3)+\f(π,12)))
=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2θ-\f(π,4)))=eq \f(\r(2),2)(sin 2θ-cs 2θ).
因为cs θ=eq \f(4,5),θ∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),所以sin θ=eq \f(3,5),
所以sin 2θ=2sin θcs θ=eq \f(24,25),
cs 2θ=cs2θ-sin2θ=eq \f(7,25),
所以feq \b\lc\(\rc\)(\a\vs4\al\c1(2θ-\f(π,3)))=eq \f(\r(2),2)(sin 2θ-cs 2θ)
=eq \f(\r(2),2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(24,25)-\f(7,25)))=eq \f(17\r(2),50).
6.已知sin α+cs α=eq \f(3\r(5),5),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,4))),sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(3,5),β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4),\f(π,2))).
(1)求sin 2α和tan 2α的值;
(2)求cs(α+2β)的值.
解:(1)由题意得(sin α+cs α)2=eq \f(9,5),
即1+sin 2α=eq \f(9,5),所以sin 2α=eq \f(4,5).
又2α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),所以cs 2α= eq \r(1-sin22α)=eq \f(3,5),
所以tan 2α=eq \f(sin 2α,cs 2α)=eq \f(4,3).
(2)因为β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4),\f(π,2))),所以β-eq \f(π,4)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,4))),
又sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(3,5),所以cseq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(4,5),
于是sin 2eq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))·cseq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(24,25).
又sin 2eq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=-cs 2β,
所以cs 2β=-eq \f(24,25),
又2β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),所以sin 2β=eq \f(7,25),
又cs2α=eq \f(1+cs 2α,2)=eq \f(4,5),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,4))),
所以cs α=eq \f(2\r(5),5),sin α=eq \f(\r(5),5).
所以cs(α+2β)=cs αcs 2β-sin αsin 2β
=eq \f(2\r(5),5)×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(24,25)))-eq \f(\r(5),5)×eq \f(7,25)
=-eq \f(11\r(5),25).
新高考数学一轮复习学案第3章第1讲 函数及其表示(含解析): 这是一份新高考数学一轮复习学案第3章第1讲 函数及其表示(含解析),共16页。学案主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
新高考数学一轮复习学案 第4章 §4.3 第1课时 两角和与差的正弦、余弦和正切公式(含解析): 这是一份新高考数学一轮复习学案 第4章 §4.3 第1课时 两角和与差的正弦、余弦和正切公式(含解析),共13页。学案主要包含了两角和与差的三角函数公式,角的变换问题等内容,欢迎下载使用。
高考数学一轮复习第4章第3课时两角和与差的正弦、余弦和正切公式学案: 这是一份高考数学一轮复习第4章第3课时两角和与差的正弦、余弦和正切公式学案,共17页。