新高考数学一轮复习学案第5章阅读与欣赏(四)三角函数中ω值的求法(含解析)
展开一、利用三角函数的周期T求解
为了使函数y=sin ωx(ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值为( )
A.98π B.eq \f(197,2)π
C.eq \f(199,2)π D.100π
【解析】 由题意,至少出现50次最大值即至少需要49eq \f(1,4)个周期,所以eq \f(197,4)T=eq \f(197,4)·eq \f(2π,ω)≤1,所以ω≥eq \f(197,2)π.
【答案】 B
eq \a\vs4\al()
解决此类问题的关键在于结合条件弄清周期T=eq \f(2π,ω)与所给区间的关系,从而建立不等关系.
二、利用三角函数的对称性求解
若函数f(x)=sin ωx(ω>0)在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,3),\f(π,2)))上单调递减,则ω的取值范围是________.
【解析】 令eq \f(π,2)+2kπ≤ωx≤eq \f(3,2)π+2kπ(k∈Z),得eq \f(π,2ω)+eq \f(2kπ,ω)≤x≤eq \f(3π,2ω)+eq \f(2kπ,ω),因为f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,3),\f(π,2)))上单调递减,
所以eq \b\lc\{(\a\vs4\al\c1(\f(π,2ω)+\f(2kπ,ω)≤\f(π,3),,\f(π,2)≤\f(3π,2ω)+\f(2kπ,ω),))得6k+eq \f(3,2)≤ω≤4k+3.又ω>0,所以k≥0,又6k+eq \f(3,2)<4k+3,得0≤k
eq \a\vs4\al()
根据正弦函数的单调递减区间,确定函数f(x)的单调递减区间,根据函数f(x)=sin ωx(ω>0)在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,3),\f(π,2)))上单调递减,建立不等式,即可求ω的取值范围.
三、利用三角函数的对称性求解
(1)已知函数f(x)=cseq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,3)))(ω>0)的一条对称轴为x=eq \f(π,3),一个对称中心为点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12),0)),则ω有( )
A.最小值2 B.最大值2
C.最小值1 D.最大值1
(2)若函数y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,6)))(ω∈N*)图象的一个对称中心是eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6),0)),则ω的最小值为________.
【解析】 (1)因为函数的中心到对称轴的最短距离是eq \f(T,4),两条对称轴间的最短距离是eq \f(T,2),所以中心eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12),0))到对称轴x=eq \f(π,3)间的距离用周期可表示为eq \f(π,3)-eq \f(π,12)=eq \f(T,4)+eq \f(kT,2)(k∈N,T为周期),解得(2k+1)T=π,又T=eq \f(2π,ω),所以(2k+1)·eq \f(2π,ω)=π,则ω=2(2k+1),当k=0时,ω=2最小.故选A.
(2)依题意得cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(πω,6)+\f(π,6)))=0,则eq \f(πω,6)+eq \f(π,6)=eq \f(π,2)+kπ(k∈Z)⇒ω=6k+2(k∈Z),又ω∈N*,所以ω的最小值为=2.
【答案】 (1)A (2)2
eq \a\vs4\al()
三角函数两条相邻对称轴或两个相邻对称中心之间的“水平间隔”为eq \f(T,2),相邻的对称轴和对称中心之间的“水平间隔”为eq \f(T,4),这就说明,我们可根据三角函数的对称性来研究其周期性,进而可以研究“ω”的取值.值得一提的是,三角函数的对称轴必经过其图象上的最高点(极大值)或最低点(极小值),函数f(x)=Asin(ωx+φ)的对称中心就是其图象与x轴的交点,这就说明,我们也可利用三角函数的极值点(最值点)、零点之间的“差距”来确定其周期,进而可以确定“ω”的取值.
四、利用三角函数的最值求解
已知函数f(x)=2sin ωx在区间eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,3),\f(π,4)))上的最小值为-2,则ω的取值范围是________.
【解析】 显然ω≠0.
若ω>0,当x∈eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,3),\f(π,4)))时,-eq \f(π,3)ω≤ωx≤eq \f(π,4)ω,因为函数f(x)=2sin ωx在区间eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,3),\f(π,4)))上的最小值为-2,所以-eq \f(π,3)ω≤-eq \f(π,2),解得ω≥eq \f(3,2).
若ω<0,当x∈eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,3),\f(π,4)))时,eq \f(π,4)ω≤ωx≤-eq \f(π,3)ω,因为函数f(x)=2sin ωx在区间eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,3),\f(π,4)))上的最小值为-2.所以eq \f(π,4)ω≤-eq \f(π,2),解得ω≤-2.
综上所述,符合条件的实数ω的取值范围是(-∞,-2]∪eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3,2),+∞)).
【答案】 (-∞,-2]∪eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(3,2),+∞))
eq \a\vs4\al()
利用三角函数的最值与对称或周期的关系,可以列出关于ω的不等式,进而求出ω的值或取值范围.
新高考数学一轮复习学案第4章阅读与欣赏(三)构造法解决抽象函数问题(含解析): 这是一份新高考数学一轮复习学案第4章阅读与欣赏(三)构造法解决抽象函数问题(含解析),共4页。
2024届高考数学一轮复习第4章思维深化微课堂三角函数解析式中“ω”的求法学案: 这是一份2024届高考数学一轮复习第4章思维深化微课堂三角函数解析式中“ω”的求法学案,共5页。
高考数学一轮复习第4章思维深化微课堂三角函数解析式中“ω”的求法学案: 这是一份高考数学一轮复习第4章思维深化微课堂三角函数解析式中“ω”的求法学案,共5页。