所属成套资源:高考物理一轮复习课时练习 (含详解)
高考物理一轮复习课时练习 第9章第6练 专题强化:带电粒子在交变电场中的运动(含详解)
展开这是一份高考物理一轮复习课时练习 第9章第6练 专题强化:带电粒子在交变电场中的运动(含详解),共7页。
1.如图甲所示,在平行板电容器A、B两极板间加上如图乙所示的交变电压。开始A板的电势比B板高,此时两板中间原来静止的电子在静电力作用下开始运动。设电子在运动中不与极板发生碰撞,向A板运动时为速度的正方向,则下列图像中能正确反映电子速度变化规律的是(其中C、D两项中的图线按正弦函数规律变化)( )
2.(多选)如图甲,真空中的两平行金属板间距为d、板长为L。A、B两板间加上如图乙所示的方波形电压。在t=0时刻,一质量为m、电荷量为e的电子以初速度v0从两板正中间沿板方向射入电场,并在t=T时刻从板间射出,不计电子重力。下列说法正确的是( )
A.电子沿板方向做加速运动
B.板间距离必须满足d≥Teq \r(\f(eU0,2m))
C.电子从板间射出时机械能增加eU0
D.电子从板间射出时的速度大小为v0
3.(2023·浙江省三模)如图所示,在一对平行金属板MN、PQ加电压,两板间形成匀强电场,忽略边缘效应,两板边缘连线外面的电场忽略不计,电压按正弦规律变化,变化周期为T。某时刻有一带电粒子沿两板间的中线OO′以初速度为v0射入电场,经t=2T时间粒子离开电场。则以下说法中正确的是( )
A.粒子一定从O′点离开电场
B.粒子离开电场时的速度一定大于v0
C.粒子离开电场时的速度可能小于v0
D.粒子在0~T内的位移一定等于在T~2T内的位移
4.(2023·云南省联考)如图甲,一带电粒子沿平行板电容器中线MN以速度v平行于极板进入(记为t=0时刻),同时在两板上加一按图乙变化的电压。已知粒子比荷为k,带电粒子只受静电力的作用且不与极板发生碰撞,经过一段时间,粒子以平行极板方向的速度射出。则下列说法中正确的是( )
A.粒子射出时间可能为t=4 s
B.粒子射出的速度大小为2v
C.极板长度满足L=3vn(n=1,2,3,…)
D.极板间最小距离为eq \r(\f(3kU0,2))
5.(多选)(2024·江苏省模拟)如图甲所示,直线加速器由一个金属圆板(序号为0)和多个横截面积相同的金属圆筒组成,序号为奇数的圆筒和电源的一极相连,圆板和序号为偶数的圆筒和该电源的另一极相连,交变电源两极间电势差的变化规律如图乙所示。若电压的绝对值为U,电子电荷量大小为e,电子通过圆筒间隙的时间可以忽略不计。在t=0时刻,圆板中央的一个电子在圆板和圆筒之间的电场中由静止开始加速,沿中心轴线冲进圆筒1,电子在每个圆筒中运动的时间均小于T,且电子均在电压变向时恰从各圆筒中射出,不考虑相对论效应,则( )
A.在t=eq \f(5T,4)时奇数圆筒相对偶数圆筒的电势差为负值
B.由于静电屏蔽作用,圆筒内不存在电场
C.电子运动到第n个圆筒时动能为(n-1)eU
D.第n个和第n+1个圆筒的长度之比为eq \r(n)∶eq \r(n+1)
6.(2023·黑龙江哈尔滨哈九中三模)实验小组用如图甲所示装置研究带电粒子在两个平行金属板间的运动,已知板长为L,两板间距d未知,将放射源P靠近平行金属板,放射出的带电粒子沿平行金属板A、B的中轴线MN射入板间,平行金属板A、B间加有如图乙所示的交变电压,已知电压U0,周期T未知,当电压稳定时,板间是匀强电场。质量为m、电荷量为q的粒子以eq \f(8,5)v0的速率在eq \f(3,8)T时刻从M点进入板间,T时刻离开金属板,运动过程中恰好不与金属板碰撞(粒子重力忽略不计)。求:平行板A、B的间距d是多少?
7.(2023·江苏南京市期中)如图甲所示,电子枪连续不断均匀地发出电子(设电子的初速度为零),经加速电压为U1的加速电场加速后由小孔穿出,沿两个距离为d的水平金属板A、B间的中线射入偏转电场,A、B两板间加如图乙所示的周期性变化的电压UAB,电压变化周期为T,正半周UAB为U0,负半周UAB为-3U0。已知电子质量为m、电荷量为-e,A、B极板长为eq \r(\f(eU1T2,2m)),所有电子都能离开偏转电场,不计电子的重力及电子间的相互作用力。求:
(1)电子经过偏转电场的时间t;
(2)从t=0时刻射入偏转电场的电子在进、出偏转电场过程中电势能的变化量ΔEp;
(3)在足够长的时间内从中线下方离开偏转电场的电子数占电子总数的比例η。
第6练 专题强化:带电粒子在交变电场中的运动
1.A [在前半个周期内,A板的电势高,电场的方向向右,电子受到的静电力方向水平向左,电子向左做初速度为零的匀加速直线运动,在后半个周期,电场的方向向左,电子所受的静电力水平向右,电子向左做匀减速直线运动直到速度为零,然后进入第二个周期,重复之前的运动,由此可知,电子在每个周期内先向左做初速度为零的匀加速直线运动,然后向左做匀减速直线运动,如此反复,由图像可知A正确,B、C、D错误。]
2.BD [水平方向上,电子沿板方向做匀速直线运动;竖直方向上,0~eq \f(T,2)内电子做匀加速直线运动,eq \f(T,2)~T内电子做匀减速直线运动,出射速度大小为v0,故D正确,A错误;竖直方向分位移为y=eq \f(1,2)·eq \f(eU0,md)(eq \f(T,2))2×2=eq \f(eU0T2,4md),由y≤eq \f(d,2)可知d≥Teq \r(\f(eU0,2m)),故B正确;0~T内静电力做功为零,机械能增加量为零,故C错误。]
3.D [电压按正弦规律变化,所以带电粒子在一个周期内所受静电力的总冲量一定等于0,所以经2T时间离开电场时,粒子的速度仍为v0,故B、C错误;在一个周期内,带电粒子沿电场方向位移取决于电子进入电场的时刻,若进入电场时,电压恰好为0,则带电粒子在前半周期加速,在后半周期减速,其位移方向不变,下一个周期的运动重复前一个周期,所以位移不为零,若进入电场时,电压恰好达到最大值,则带电粒子在前两个四分之一周期内加速度减小后反向加速,在后两个四分之一周期内反向加速度减小后正向加速,前半周期的位移与后半周期的位移刚好大小相等,方向相反,所以总位移为0,即粒子可能从O′点离开电场,故A错误;因为经过一个周期,带电粒子的速度总是回到原来的速度v0,所以粒子在每个周期时的运动都是相同的,即每个周期内的位移也一定是相同的,故D正确。]
4.D [粒子进入电容器后,在平行于极板方向做匀速直线运动,垂直极板方向的运动v-t图像如图所示
因为粒子平行极板射出,可知粒子垂直极板的分速度为0,所以射出时刻可能为1.5 s、3 s、4.5 s…,满足t=1.5n(n=1,2,3,…),粒子射出的速度大小必定为v,故A、B错误;极板长度L=v·1.5n(n=1,2,3,…),故C错误;因为粒子不跟极板碰撞,则应满足eq \f(d,2)≥eq \f(1,2)vy×1.5 s,vy=a×1 s,a=eq \f(qU0,md),联立求得d≥eq \r(\f(3kU0,2)),故D正确。]
5.BD [因为t=eq \f(5T,4)=T+eq \f(T,4),t=eq \f(T,4)时圆筒1相对圆板的电势差为正值,同理,t=eq \f(5T,4)奇数圆筒相对偶数圆筒的电势差为正值,A错误;由于静电屏蔽作用,圆筒内不存在电场,B正确;电子每经过一个间隙,静电力做功eU,根据动能定理,电子运动到第n个圆筒时动能为neU=Ek-0,电子运动到第n个圆筒时动能为neU,C错误;根据动能定理得eU=eq \f(1,2)mv12,2eU=
eq \f(1,2)mv22,3eU=eq \f(1,2)mv32…,neU=eq \f(1,2)mvn2,(n+1)eU=eq \f(1,2)mvn+12,第n个和第n+1个圆筒的长度之比为Ln∶Ln+1=vn∶vn+1,解得Ln∶Ln+1=eq \r(n)∶eq \r(n+1),D正确。]
6.eq \f(\r(7mqU0)L,8mv0)
解析 eq \f(3,8)T时刻从M点进入板间,T时刻离开金属板,粒子水平方向做匀速直线运动
T-eq \f(3,8)T=eq \f(L,\f(8,5)v0)=eq \f(5L,8v0),T=eq \f(L,v0)
竖直方向,规定向下为正方向,且开始粒子向下做匀加速直线运动,设A、B两板间距为d,则E=eq \f(U0,d),由牛顿第二定律得qE=ma1,a1=eq \f(qU0,md)
在eq \f(3T,8)~T时间内,竖直方向最大位移是eq \f(d,2),粒子先做加速运动,时间为
t1=eq \f(T,2)-eq \f(3,8)T=eq \f(1,8)T,vy1=a1t1=eq \f(1,8)a1T,运动的位移为y1=eq \f(1,2)·vy1t1
再减速至反向加速运动,
时间为t2=T-eq \f(3,8)T-t1=eq \f(T,2)
粒子在eq \f(T,2)~T时间内做初速度为vy1方向向下,加速度a1=eq \f(qU0,md)方向向上的匀变速运动,运动的位移为
y2=vy1t2-eq \f(1,2)a1t22
因此粒子的总位移为y=y1+y2=eq \f(1,2)vy1t1+vy1t2-eq \f(1,2)a1t22,
解得y=-eq \f(7,128)a1T2=-eq \f(d,2)
得d=eq \f(\r(7mqU0)L,8mv0)。
7.(1)eq \f(T,2) (2)-eq \f(e2U02T2,8md2) (3)eq \f(1+\r(3),4)
解析 (1)根据动能定理,
有eU1=eq \f(1,2)mv02,解得v0=eq \r(\f(2eU1,m)),水平方向L=eq \r(\f(eU1T2,2m))=v0t
联立解得t=eq \f(T,2)
(2)竖直方向y=eq \f(1,2)at2,
加速度a=eq \f(eU0,md),解得y=eq \f(eU0T2,8md),
由功能关系有eeq \f(U0,d)y=-ΔEp
解得ΔEp=-eq \f(e2U02T2,8md2)
(3)电子在电场中的运动时间均为t=eq \f(T,2),电压为U0时,e·eq \f(U0,d)=ma1
电压为3U0时,e·eq \f(3U0,d)=ma2,
解得a2=3a1
在0~eq \f(T,2)时间内,设eq \f(T,2)-t1时刻射入电场中的电子偏转位移刚好为0,
有eq \f(1,2)a1t12+a1t1(eq \f(T,2)-t1)-
eq \f(1,2)a2(eq \f(T,2)-t1)2=0,解得t1=eq \f(T,4)
即在0~eq \f(T,2)时间内,eq \f(T,4)~eq \f(T,2)时间内射入电场中的电子均可从中线下方飞出;
eq \f(T,2)~T时间内,设T-t2时刻射入的电子刚好偏转位移为0,
有eq \f(1,2)a2t22+a2t2(eq \f(T,2)-t2)-
eq \f(1,2)a1(eq \f(T,2)-t2)2=0
解得t2=eq \f(2-\r(3),4)T,即eq \f(T,2)~T这段时间内,eq \f(T,2)~(T-t2)时间内射入电场中的电子均可从中线下方飞出,在一个周期内能从中线下方离开的电子射入时间间隔为Δt=eq \f(1+\r(3),4)T,从中线下方离开偏转电场的电子占电子总数的比例η=eq \f(Δt,T)=eq \f(1+\r(3),4)。
相关试卷
这是一份高考物理一轮复习讲义第9章第6课时 专题强化 带电粒子在交变电场中的运动(2份打包,原卷版+教师版),文件包含高考物理一轮复习讲义第9章第6课时专题强化带电粒子在交变电场中的运动教师版doc、高考物理一轮复习讲义第9章第6课时专题强化带电粒子在交变电场中的运动学生版doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
这是一份新高考物理一轮复习刷题练习第58讲 带电粒子在交变电场中的运动(含解析),共28页。试卷主要包含了常见的题目类型,思维方法等内容,欢迎下载使用。
这是一份新高考2024版高考物理一轮复习微专题小练习专题49带电粒子在交变电场中的运动,共3页。