2024-2025学年安徽省和县九上数学开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点P(2,﹣3)关于y轴的对称点的坐标是( )
A.(2,3)B.(﹣2,﹣3)C.(﹣2,3)D.(﹣3,2)
2、(4分)在ABCD中,∠A=40°,则∠C=( )
A.40°B.50°C.130°D.140°
3、(4分)如图,在正方形 ABCD 中,BD=2,∠DCE 是正方形 ABCD 的外角,P 是∠DCE 的角平分线 CF 上任意一点,则△PBD 的面积等于 ( )
A.1B.1.5C.2D.2.5
4、(4分)最早记载勾股定理的我国古代数学名著是( )
A.《九章算术》B.《周髀算经》C.《孙子算经》D.《海岛算经》
5、(4分)如图,在平行四边形ABCD中,AB=4,AD=6,DE平分∠ADC,则BE的长为( )
A.1B.2C.3D.4
6、(4分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为( )
A.B.C.D.
7、(4分)已知点A(﹣2,a),B(﹣1,b),C(3,c)都在函数y=﹣的图象上,则a、b、c的大小关系是( )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b
8、(4分)如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )
A.1B.2C.5D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,AO=OC,BD=16cm,则当OB=___cm时,四边形ABCD是平行四边形.
10、(4分)如图,点B是反比例函数()图象上一点,过点B作x轴的平行线,交轴于点A,点C是轴上一点,△ABC的面积是2,则=______.
11、(4分)若关于x的一元一次不等式组有解,则m的取值范围为__________.
12、(4分)如图①,如果 A1、A2、A3、A4 把圆周四等分,则以A1、A2、A3、A4为顶点的直角三角形4个;如图②,如果A1、A2、A3、A4、A5、A6 把圆周六等分,则以A1、A2、A3、A4、A5、A6 为点的直角三角形有 12 个;如果 A1、A2、A3、……A2n 把圆周 2n 等分,则以 A1、A2、A3、…A2n为顶点的直角三角形有__________个,
13、(4分)阅读下面材料:
小明想探究函数的性质,他借助计算器求出了y与x的几组对应值,并在平面直角坐标系中画出了函数图象:
小聪看了一眼就说:“你画的图象肯定是错误的.”
请回答:小聪判断的理由是 .请写出函数的一条性质: .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,点D是正方形OABC的边AB上的动点,OC=1.以AD为一边在AB的右侧作正方形ADEF,连结BF交DE于P点.
(1)请直接写出点A、B的坐标;
(2)在点D的运动过程中,OD与BF是否存在特殊的位置关系?若存在,试写出OD与BF的位置关系,并证明;若不存在,请说明理由.
(3)当P点为线段DE的三等分点时,试求出AF的长度.
15、(8分)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中表示时间,表示张强离家的距离.
根据图象解答下列问题:
(1)体育场离张强家多远?张强从家到体育场用了多少时间?
(2)体育场离文具店多远?
(3)张强在文具店停留了多少时间?
(4)求张强从文具店回家过程中与的函数解析式.
16、(8分)在△BCF中,点D是边CF上的一点,过点D作AD∥BC,过点B作BA∥CD交AD于点A,点G是BC的中点,点E是线段AD上一点,且∠CDG=∠ABE=∠EBF.
(1)若∠F=60°,∠C=45°,BC=2,请求出AB的长;
(2)求证:CD=BF+DF.
17、(10分) (1)已知一个正分数(m>n>0),将分子、分母同时增加1,得到另一个正分数,比较和的值的大小,并证明你的结论;
(2)若正分数(m>n>0)中分子和分母同时增加k(整数k>0),则_____ .
(3)请你用上面的结论解释下面的问题:
建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好.若原来的地板面积和窗户面积分别为x,y,同时增加相等的窗户面积和地板面积,则住宅的采光条件是变好还是变坏?请说明理由.
18、(10分)先化简:,再从中选取一个你认为合适的整数代入求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线y=-x+m与y=nx+4n的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n>0的解集为___________.
20、(4分)等边三角形中,两条中线所夹的锐角的度数为_____.
21、(4分)如图,在平面直角坐标系中,点,射线轴,直线交线段于点,交轴于点,是射线上一点.若存在点,使得恰为等腰直角三角形,则的值为_______.
22、(4分)某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.
23、(4分)若二次根式有意义,则的取值范围是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图:在△ABC中,点E,F分别是BA,BC边的中点,过点A作AD∥BC交FE的延长线于点D,连接DB,DC.
(1)求证:四边形ADFC是平行四边形;
(2)若∠BDC=90°,求证:CD平分∠ACB;
(3)在(2)的条件下,若BD=DC=6,求AB的长.
25、(10分)如图,将的边延长到点,使,交边于点.
求证:
若,求证:四边形是矩形
26、(12分)(1);
(2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:点P(2,-3)关于y轴的对称点的坐标是(-2,-3).故选B.
考点:关于x轴、y轴对称的点的坐标.
2、A
【解析】
因为平行四边形的对角相等,所以∠A=∠C =40°,
故选A
3、A
【解析】
由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.
解:△PBD的面积等于 ×2×1=1.故选A.
“点睛”考查了三角形面积公式以及代入数值求解的能力,注意平行线间三角形同底等高的情况.
4、B
【解析】
由于《周髀算经》是我国最古老的一部天文学著作,不但记载了勾股定理,还详细的记载了有关“勾股定理”公式以及证明方法,所以是最早有记载的.
【详解】
最早记载勾股定理的我国古代数学名著是《周髀算经》,
故选:B.
考查了数学核心素养的知识,了解最早记载勾股定理的我国古代数学名著是解题的依据.
5、B
【解析】
只要证明CD=CE=4,根据BE=BC-EC计算即可.
【详解】
∵四边形ABCD是平行四边形,
∴AB=CD=4,AD=BC=6,
∵AD∥BC,
∴∠ADE=∠DEC,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠DEC=∠CDE,
∴DC=CE=AB=4,
∴BE=BC-CE=6-4=2,
故选B.
本题考查了平行线性质,等腰三角形的性质和判定,平行四边形性质等知识点,关键是求出BC、CE的长.
6、C
【解析】
首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率。
【详解】
∵正方形被等分成9份,其中阴影方格占4份,
∴当蚂蚁停下时,停在地板中阴影部分的概率为,
故选:C
此题考查概率公式,掌握运算法则是解题关键
7、D
【解析】
先把各点代入反比例函数的解析式,求出a、b、c的值,再比较大小即可.
【详解】
∵点A(-2,a),B(-1,b),C(3,c)都在函数的图象上,
∴,
∴b<a<c.
故选B.
考查的是反比例函数图象上点的坐标特点,熟知反比例函数的图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
8、C
【解析】
分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.
详解:∵数据1,2,x,5,6的众数为6,
∴x=6,
把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,
则这组数据的中位数为5;
故选C.
点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据对角线互相平分的四边形是平行四边形可得OB=1cm时,四边形ABCD是平行四边形.
【详解】
当OB=1cm时,四边形ABCD是平行四边形,
∵BD=16cm,OB=1cm,
∴BO=DO,
又∵AO=OC,
∴四边形ABCD是平行四边形,
故答案为1.
本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
10、1
【解析】
根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|=2,再根据反比例函数的图象位于第一象限即可求出k的值.
【详解】
连接OB.
∵AB∥x轴,∴S△AOB=S△ACB=2,根据题意可知:S△AOB|k|=2,又反比例函数的图象位于第一象限,k>0,则k=1.
故答案为1.
本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.
11、m.
【解析】
首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.
【详解】
,
解①得:x<2m,解②得:x>2﹣m,
根据题意得:2m>2﹣m,解得:m.
故答案为:m.
本题考查了解不等式组,解决本题的关键是熟记确定不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
12、2n(n-1)
【解析】
根据圆周角定理找到直径所对的圆周角是直角,然后由一条直径所对的直角数来寻找规律.
【详解】
解:由圆周角定理知,直径所对的圆周角是直角.
∴当A1、A2、A3、A4把圆周四等分时,该圆中的直径有A1A3,A2A4两条,
∴①当以A1A3为直径时,有两个直角三角形;
②当以A2A4为直径时,有两个直角三角形;
∴如果A1、A2、A3、A4把圆周四等分,则以A1、A2、A3、A4为顶点的直角三角形有(4÷2)×(4-2)=4个;
当A1、A2、A3、A4、A5、A6把圆周六等分,则以A1、A2、A3、A4、A5、A6为顶点的直角三角形有(6÷2)×(6-2)=12个;
当A1、A2、A3、…A2n把圆周2n等分,则以A1、A2、A3、…A2n为顶点的直角三角形有(2n÷2)×(2n-2)=2n(n-1)个.
故答案是:2n(n-1).
本题考查圆周角定理:直径所对的圆周角是直角.解答该题是关键是根据直径的条数、顶点的个数来寻找规律.
13、如:因为函数值不可能为负,所以在x轴下方不会有图象; 当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大
【解析】
【分析】结合函数解析式y的取值范围可判断图象的大概情况,从函数图象可得出相关信息.
【详解】
(1). 因为,函数值不可能为负,所以在x轴下方不会有图象,所以是错的;
(2).根据函数的图象看得出: 当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大.
故答案为(1).如:因为函数值不可能为负,所以在x轴下方不会有图象; (2). 当x≤-1时,y随x增大而减小,当x≥1时,y随x增大而增大
【点睛】本题考核知识点:函数的图象.解题关键点:从函数图象获取信息.
三、解答题(本大题共5个小题,共48分)
14、(1)A(1,0),B(1,1);(2)OD⊥BF,理由见解析;(3)当P点为线段DE的三等分点时,AF的长度为2或2.
【解析】
(1)利用正方形的性质得出OA=AB=1,即可得出结论;
(2)利用SAS判断出△AOD≌△BAF,进而得出∠AOD=∠BAF,即可得出结论;
(3)先表示出BD,DP,再判断出△BDP∽△BAF,得出,代入解方程即可得出结论。
【详解】
(1)∵四边形OABC是正方形,
∴BC⊥OC,AB⊥OA,OB=AB=BC=OC,
∵OC=1,
∴BC=AB=1,
∴A(1,0),B(1,1);
(2)OD⊥BF,理由:如图,延长OD交BF于G,
∵四边形ADEF是正方形,
∴AD=AF,∠BAF=∠OAD,
在△AOD和△BAF中, ,
∴△AOD≌△BAF(SAS),
∴∠AOD=∠BAF,
∴∠BAF+∠AFB=90°,
∴∠AOD+AFB=90°,
∴∠OGF=90°,
∴OD⊥BF;
(3)设正方形ADEF的边长为x,
∴AF=AD=DE=x,
∴BD=AB﹣AD=1﹣x,
∵点P是DE的三等分点,
∴DP=AF=x或DP=AF=x
∵DE∥AF,
∴△BDP∽△BAF,
∴,
∴或 ,
∴x=2或x=2,
当P点为线段DE的三等分点时,AF的长度为2或2.
本题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,垂直的判定,相似三角形的判定和性质,用方程的思想解决问题是解本题的
15、(1)体育场离张强家,张强从家到体育场用了;(2)体育场离文具店;(3)张强在文具店停留了;(4)()
【解析】
(1)根据y轴的分析可得体育场离张强家的距离,根据x轴可以分析出张强从家到体育场用了多少时间.
(2)通过图象可得张强在45min的时候,到达了文具店,通过图象观察体育场离文具店的距离为2.5-1.5=1.
(3)根据图象可得张强在45min到65min之间是运动的路程为0,因此可得在文具店停留的时间.
(4)已知在65min是路程为1.5,100min是路程为0,采用待定系数法计算可得一次函数的解析式.
【详解】
解:
(1)体育场离张强家,张强从家到体育场用了
(2)体育场离文具店
(3)张强在文具店停留了
(4)设张强从文具店回家过程中与的函数解析式为,
将点,代入得
,
解得,
∴()
本题主要考查图象的分析识别能力,这是考试的热点,应当熟练掌握,注意第四问要写出自变量的范围.
16、(1)3+(2)见解析
【解析】
(1)过点E作EH⊥AB交AB于点H.分别求出AH,BH即可解决问题;
(2)连接EF,延长FE交AB与点M.想办法证明△BMF是等腰三角形即可解决问题;
【详解】
解:(1)过点E作EH⊥AB交AB于点H.
∵AD∥BC,AB∥CD,
∴四边形ABCD为平行四边形.
∴AB=DC,∠DAB=∠DBC,
在△CGD和△AEB中,
,
∴△CGD≌△AEB,
∴∠DGC=∠BEA,
∴∠DGB=∠BED,
∵AD∥BC,
∴∠EDG+∠DGB=180°,
∴∠EDG+∠BED=180°
∴EB∥DG,
∴四边形BGDE为平行四边形,
∴BG=ED,
∵G是BD的中点,
∴BG=BC,
∴BC=AD,ED=BG=AD,
∵BC=2,
∴AE=AD=,
在Rt△AEH中,∵∠EAB=45°,sin∠EAB=sin 45°=,
∴EH=,
∵∠EHA=90°,
∴△AHE为等腰直角三角形,
∴AH=EH=,
∵∠F=60°,
∴∠FBA=60°,
∵∠EBA=∠EBF,
∴∠EBA=30°,
在Rt△EHB中,tan∠EBH=tan 30°=,
∴HB=3,
∴AB=3+.
(2)连接EF,延长FE交AB与点M.
∵∠A=∠EDF,AE=DE,∠AEM=∠DEF,
∴△AEM≌△DEF(ASA),
∴DF=AM,ME=EF,
又∵∠EBA=∠EBF,
∴△MBF是等腰三角形
∴BF=BM,
又∵AB=AM+BM,
∴CD=BF+DF.
本题考查全等三角形的判定和性质,等腰三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形或全等三角形解决问题,属于中考常考题型.
17、 (1)>,证明见解析;(2)>;(3)住宅的采光条件变好了
【解析】
(1)利用作差法求得,再判断结果与1的大小即可得;
(2)将以上所得结论中的1换作k,即可得出结论;
(3)设增加面积为a,由(2)的结论知,据此可得答案.
【详解】
(1)>(m>n>1).
证明:∵-==,
又∵m>n>1,
∴>1.
∴>
(2)根据(1)的方法,将1换为k,有>(m>n>1,k>1).
故答案为>.
(3)设增加面积为a,
由(2)的结论,可得.
所以住宅的采光条件变好了.
本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则及作差法比较大小的方法.
18、;当时,原式或当时,原式(任选其一即可).
【解析】
先根据分式的各个运算法则化简,然后从x的取值范围中选取一个使原分式有意义的值代入即可.
【详解】
解:原式
.
∵的整数有-4,-3,-2,-1,又根据分式的有意义的条件,,3和-1.
∴取-4或-2.
当时,原式.
当时,原式.
此题考查的是分式的化简求值题,掌握分式的各个运算法则和分式有意义的条件是解决此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
令时,解得,则与x轴的交点为(﹣4,0),再根据图象分析即可判断.
【详解】
令时,解得,故与x轴的交点为(﹣4,0).
由函数图象可得,当时,函数的图象在x轴上方,且其函数图象在函数图象的下方,故解集是.
故答案为: .
本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
20、60°
【解析】
如图,等边三角形ABC中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=∠ABC=30°,再根据三角形外角的性质即可得出结论.
【详解】
如图,
∵等边三角形ABC,AD、BE分别是中线,
∴AD、BE分别是角平分线,
∴∠1=∠2=∠ABC=30°,
∴∠3=∠1+∠2=60°.
本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.
21、3或6
【解析】
先表示出A、B坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b即可.
【详解】
解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,
∴∠DBC=∠BAO,
由直线交线段OC于点B,交x轴于点A可知OB=b,OA=b,
∵点C(0,6),
∴OC=6,
∴BC=6-b,
在△DBC和△BAO中,
∴△DBC≌△BAO(AAS),
∴BC=OA,
即6-b=b,
∴b=3;
②当∠ADB=90°时,如图2,作AF⊥CE于F,
同理证得△BDC≌△DAF,
∴CD=AF=6,BC=DF,
∵OB=b,OA=b,
∴BC=DF=b-6,
∵BC=6-b,
∴6-b=b-6,
∴b=6;
③当∠DAB=90°时,如图3,
作DF⊥OA于F,
同理证得△AOB≌△DFA,
∴OA=DF,
∴b=6;
综上,b的值为3或6,
故答案为3或6.
本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.
22、1.
【解析】
根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.
【详解】
解:将数据从小到大重新排列为:5、6、1、1、10、10,
所以这组数据的中位数为=1.
故答案为:1.
本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.
23、
【解析】
根据二次根式有意义的条件:被开方数≥0,列不等式即可.
【详解】
根据二次根式有意义的条件:
解得:
故答案为
此题考查的是二次根式有意义的条件,解决此题的关键是根据二次根式有意义的条件:被开方数≥0,列不等式.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;(3)3
【解析】
(1)证明是的中位线,得出,,由,即可得出四边形是平行四边形;
(2)由直角三角形斜边上的中线性质得出,得出平行四边形为菱形,由菱形的性质即可得出结论;
(3)证出为等腰直角三角形,得出,由等腰三角形的性质得出,,证出四边形为正方形,得出,,由勾股定理即可得出结果.
【详解】
(1)证明:点,分别是,边的中点,
是的中位线,
,
,
又,
四边形是平行四边形;
(2)解:,是边的中点,
,
平行四边形为菱形,
平分;
(3)解:,,
为等腰直角三角形,
,
是边的中点,
,,
四边形是菱形,
四边形为正方形,
,,
.
本题考查了平行四边形的判定与性质、三角形中位线定理、直角三角形斜边上的中线性质、菱形的判定与性质、正方形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质,证明四边形是菱形是解题的关键.
25、 ()证明见解析;(2)证明见解析.
【解析】
(1)根据平行四边形的性质可得AD//BC,AD=BC,继而由AD=AF,可得四边形AFBC是平行四边形,根据平行四边形的对角线互相平分即可得结论;
(2)由四边形AFBC是平行四边形,可得CE=FE,AE=EB,由DC//AB可得∠BAF=∠D,继而由∠BEF=2∠D以及三角形外角的性质可得∠EAF=∠AFE,由此得EA=EF,进而得出AB=CF,根据对角线相等的平行四边形是矩形即可得结论.
【详解】
(1)四边形是平行四边形,
,
,
,
四边形是平行四边形,
;
,
四边形是平行四边形,
,
四边形是平行四边形,
∴DC//AB,
,
又
,
,
,
,
,
,
平行四边形是矩形.
本题考查了平行四边形的判定与性质,矩形的判定,三角形外角的性质等,熟练掌握相关的性质定理与判定定理是解题的关键.
26、(1);(2)-5.
【解析】
(1)首先根据立方根、零次幂、负指数幂和绝对值的性质化简,然后计算即可;
(2)将二次根式化简,然后应用乘法分配律,进行计算即可.
【详解】
解:(1)原式;
(2)原式.
此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.
题号
一
二
三
四
五
总分
得分
x
…
-3
-2
-1
1
2
3
…
y
…
2.83
1.73
0
0
1.73
2.83
…
2024-2025学年安徽省马鞍山和县联考九上数学开学经典试题【含答案】: 这是一份2024-2025学年安徽省马鞍山和县联考九上数学开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省淮南市寿县九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年安徽省淮南市寿县九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省和县联考九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年安徽省和县联考九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。