2024-2025学年安徽省蒙城下县九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)观察图中的函数图象,则关于的不等式的解集为( )
A.B.C.D.
2、(4分)一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为( )
A.小时B.小时C. 小时D.小时
3、(4分)要使二次根式有意义,字母的取值范围是( )
A.x≥B.x≤C.x>D.x<
4、(4分)数名射击运动员的第一轮比赛成绩如下表所示,则他们本轮比赛的平均成绩是( )
A.7.8环B.7.9环C.8.1环D.8.2环
5、(4分)下列说法正确的是( )
A.了解某型导弹杀伤力的情况应使用全面调查
B.一组数据3、6、6、7、9的众数是6
C.从2000名学生中选200名学生进行抽样调查,样本容量为2000
D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2甲=0.3,S2乙=0.4,则乙的成绩更稳定
6、(4分)下列式子中,属于最简二次根式的是:
A.B.C.D.
7、(4分)矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为( )
A.3B.C.2或3D.3或
8、(4分)随机抽取10名八年级同学调查每天使用零花钱的情况,结果如表,则这10名同学每天使用零花钱的中位数是
A.2元B.3元C.4元D.5元
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程的解是__________.
10、(4分)如图,在中,,点,,分别是,,的中点,若,则线段的长是__________.
11、(4分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择___________.
12、(4分)为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:
某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为____元.
13、(4分)在菱形中,若,,则菱形的周长为________.
三、解答题(本大题共5个小题,共48分)
14、(12分) “金牛绿道行“活动需要租用、两种型号的展台,经前期市场调查发现,用元租用的型展台的数量与用元租用的型展台的数量相同,且每个型展台的价格比每个型展台的价格少元.
(1)求每个型展台、每个型展台的租用价格分别为多少元(列方程解应用题);
(2)现预计投入资金至多元,根据场地需求估计,型展台必须比型展台多个,问型展台最多可租用多少个.
15、(8分)已知一次函数的图象经过点A ,B 两点.
(1)求这个一次函数的解析式;
(2)求一次函数的图像与两坐标轴所围成的三角形的面积.
16、(8分)如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.
17、(10分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
18、(10分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:
()若商场预计进货款为元,则这两种台灯各购进多少盏?
()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果最简二次根式和是同类二次根式,那么a=_______
20、(4分)将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.
21、(4分)已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.
22、(4分)不等式组的解集是,那么的取值范围是__________.
23、(4分)如图,矩形纸片中,已知,,点在边上,沿折叠纸片,使点落在点处,连结,当为直角三角形时,的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知和线段a,求作菱形ABCD,使,.(只保留作图痕迹,不要求写出作法)
25、(10分)某中学积极开展跳绳锻炼,一次体育測试后,体育委员统计了全班同学单位时间的跳绳次数,列出了频数分布表和頻数分布直方图,如图:
(1)补全频数分布表和频数分布直方图;
(2)表中组距是 次,组数是 组;
(3)跳绳次数在范围的学生有 人,全班共有 人;
(4)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?
26、(12分)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据图象得出两图象的交点坐标是(1,2)和当x<1时,ax<bx+c,推出x<1时,ax<bx+c,即可得到答案.
【详解】
解:由图象可知,两图象的交点坐标是(1,2),
当x>1时,ax>bx+c,
∴关于x的不等式ax-bx>c的解集为x>1.
故选:D.
本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.
2、C
【解析】
过点C作CD垂直AB延长线于D,根据题意得∠CDB=45°,∠CAD=30°,设BD=x则CD=BD=x,BC=x,由∠CAD=30°可知tan∠CAD= 即 ,解方程求出BD的长,从而可知BC的长,进而求出救援艇到达C处所用的时间即可.
【详解】
如图:过点C作CD垂直AB延长线于D,则∠CDB=45°,∠CAD=30°,
∵∠CDB=45°,CD⊥BD,
∴BD=CD,
设BD=x,救援艇到达C处所用的时间为t,
∵tan∠CAD=,AD=AB+BD,
∴,得x=20(海里),
∴BC=BD=20(海里),
∴t= = (小时),
故选C.
本题考查特殊角三角函数,正确添加辅助线、熟练掌握特殊角的三角函数值是解题关键.
3、B
【解析】
二次根式的被开方数应为非负数,列不等式求解.
【详解】
由题意得:1-2x≥0,
解得x≤,
故选B.
主要考查了二次根式的意义和性质.
概念:式子(a≥0)叫二次根式.
性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
4、C
【解析】
由题意可知:这些运动员本轮比赛的平均成绩为(环).故选C.
5、B
【解析】
直接利用方差的意义以及全面调查与抽样调查、众数的定义分别分析得出答案.
【详解】
解:A、了解某型导弹杀伤力的情况应使用抽样调查,故此选项错误;
B、一组数据3、6、6、7、9的众数是6,正确;
C、从2000名学生中选200名学生进行抽样调查,样本容量为200,故此选项错误;
D、甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2甲=0.3,S2乙=0.4,则甲的成绩更稳定,故此选项错误;
故选B.
此题主要考查了方差的意义以及全面调查与抽样调查、众数的定义,正确把握相关定义是解题关键.
6、A
【解析】
根据最简二次根式的定义对各选项进行判断.
【详解】
解: =3,=2 ,=
而为最简二次根式.
故选:A.
本题考查最简二次根式:熟练掌握最简二次根式满足的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式).
7、D
【解析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得x=,
∴BE=;
②当点B′落在AD边上时,如图2所示.
此时ABEB′为正方形,
∴BE=AB=1.
综上所述,BE的长为或1.
故选D.
本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
8、B
【解析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
解:共10名同学,中位数是第5和第6的平均数,故中位数为3,
故选:.
本题考查了中位数,正确理解中位数的意义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先移项,然后开平方,再开立方即可得出答案.
【详解】
,
,
故答案为:.
本题主要考查解方程,掌握开平方和开立方的法则是解题的关键.
10、1.
【解析】
先根据直角三角形斜边上的中线等于斜边的一半求出AB的长,再根据三角形中位线定理求出EF的长即可.
【详解】
中,,D是AB的中点,
即CD是直角三角形斜边上的中线,
,
又分别是的中点,
∴是的中位线,
,
故答案为:1.
此题主要考查了直角三角形的性质以及三角形中位线定理,熟练掌握它们的性质是解答此题的关键.
11、甲
【解析】
首先比较平均数,平均数相同时选择方差较小的运动员参加即可.
【详解】
解:∵,
∴从甲和丙中选择一人参加比赛,
∵S甲2=S乙2<S丙2<S丁2,
∴选择甲参赛;
故答案为:甲.
此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.
12、1
【解析】
根据题意算出5种方案的钱数,故可求解.
【详解】
解:连续6天不限次数乘坐地铁有5种方案
方案①:买一日票6张,费用20×6=120(元)
方案②:买二日票3张:30×3=90(元)
方案③:买三日票2张:40×2=1(元)
方案④:买一日票1张,五日票1张:20+70=120(元)
方案⑤:买七日票1张:90元
故方案③费用最低:40×2=1(元)
故答案为1.
此题主要考查有理数运算的应用,解题的关键是根据题意写出各方案的费用.
13、8
【解析】
由菱形的,可得∠BAD=∠BCD =60°,则在Rt△AOB中根据勾股定理以及30°所对的直角边是斜边的一半,列方程可以求出AB的长,即可求出菱形周长.
【详解】
解:如图,
∵ABCD为菱形
∴∠BAD=∠BCD,BD⊥AC,O为AC、BD中点
又∵
∴∠BAD=∠BCD =60°
∴∠BAC=∠BAD=30°
在Rt△AOB中,BO=AB,
设BO=x,根据勾股定理可得:
解得x=1
∴AB=2x=2
∴菱形周长为8
故答案为8
本题考查菱形的性质综合应用,灵活应用菱形性质是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)每个A型展台,每个B型展台的租用价格分别为800元、1200元;(2)B型展台最多可租用31个.
【解析】
(1)首先设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,根据关键语句“用1600元租用的A型展台的数量与用2400元租用的B型展台的数量相同.”列出方程,解方程即可.
(2)根据预计投入资金至多80000元,列不等式可解答.
【详解】
解:(1)设每个A型展台的租用价格为x元,则每个B型展台的租用价格为(x+400)元,
由题意得:,
解得:x=800,
经检验:x=800是原分式方程的解,
∴B型展台价格:x+400=800+400=1200,
答:每个A型展台,每个B型展台的租用价格分别为800元、1200元;
(2)设租用B型展台a个,则租用A型展台(a+22)个,
800(a+22)+1200a≤80000,
a≤31.2,
答:B型展台最多可租用31个.
本题考查了分式方程的应用和一元一次不等式的应用,弄清题意,表示出A、B两种展台的租用价格,确认相等关系和不等关系是解决问题的关键.
15、(1);(2)4.
【解析】
(1)先利用待定系数法确定一次函数的解析式是y=2x-4;
(2)先确定直线y=2x-4与两坐标轴的交点坐标,然后根据三角形面积公式求解.
【详解】
解: (1)设这个一次函数的解析式为: y=kx+b(k≠0) .
将点A代入上式得:
解得
∴这个一次函数的解析式为:
(2) ∵
∴当y=0时,2x-4=0,则x=2
∴图象与x轴交于点C(2,0)
∴
此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于把已知点代入解析式
16、∠EBF=20°,∠FBC=40°.
【解析】
试题分析:在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF中∠FBC=40°求得∠FBC的度数.
解:在Rt△ABF中,∠A=70,CE,BF是两条高,
∴∠EBF=20°,∠ECA=20°,
又∵∠BCE=30°,
∴∠ACB=50°,
∴在Rt△BCF中∠FBC=40°.
17、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.
【解析】
【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;
(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.
【详解】(1)设第一批饮料进货单价为元,则:
解得:
经检验:是分式方程的解
答:第一批饮料进货单价为8元.
(2)设销售单价为元,则:
,
化简得:,
解得:,
答:销售单价至少为11元.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.
18、(1)购进型台灯盏,型台灯25盏;
(2)当商场购进型台灯盏时,商场获利最大,此时获利为元.
【解析】
试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案.
试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
根据题意得,30x+50(100﹣x)=3500,
解得x=75,
所以,100﹣75=25,
答:应购进A型台灯75盏,B型台灯25盏;
(2)设商场销售完这批台灯可获利y元,
则y=(45﹣30)x+(70﹣50)(100﹣x),
=15x+2000﹣20x,
=﹣5x+2000,
∵B型台灯的进货数量不超过A型台灯数量的3倍,
∴100﹣x≤3x,
∴x≥25,
∵k=﹣5<0,
∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)
答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
考点:1.一元一次方程的应用;2.一次函数的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
分析:根据同类二次根式的被开方式相同列方程求解即可.
详解:由题意得,
3a+4=25-4a,
解之得,
a=3.
故答案为:3.
点睛:本题考查了同类二次根式的应用,根据同类二次根式的定义列出关于a的方程是解答本题的关键.
20、y=2x+1.
【解析】
由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,
故答案为y=2x+1.
21、1
【解析】
根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.
【详解】
解:设这个凸多边形的边数是n,根据题意得
(n-2)•110°=3×360°,
解得n=1.
故这个凸多边形的边数是1.
故答案为:1.
本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.
22、m≤4
【解析】
试题解析:
由①得:x>4.当x>m时的解集是x>4,根据同大取大,所以
故答案为
23、3或
【解析】
分两种情况:①当∠EFC=90°,先判断出点F在对角线AC上,利用勾股定理求出AC,设BE=x,表示出CE,根据翻折变换的性质得到AF=AB,EF=BE,再根据Rt△CEF利用勾股定理列式求解;②当∠CEF=90°,判断四边形ABEF是正方形,根据正方形的性质即可求解.
【详解】
分两种情况:①当∠EFC=90°,如图1,
∵∠AFE=∠B=90°,∠EFC=90°,
∴点A、F、C共线,
∵矩形ABCD的边AD=4,
∴BC=AD=4,
在Rt△ABC中,AC=
设BE=x,则CE=BC-BE=4-x,
由翻折的性质得AF=AB=3,EF=BE=x,∴CF=AC-AF=5-3=2
在Rt△CEF中,EF2+CF2=CE2,
即x2+22=(4-x)2,
解得x=;
②当∠CEF=90°,如图2
由翻折的性质可知∠AEB=∠AEF=45°,
∴四边形ABEF是正方形,
∴BE=AB=3,
故BE的长为3或
此题主要考查矩形的折叠问题,解题的关键是根据图形进行分类讨论.
二、解答题(本大题共3个小题,共30分)
24、详见解析
【解析】
作∠DAB=∠ ,在射线AB,射线AD分别截取AB=AD=a,再分别以B,D为圆心a为半径画弧,两弧交于点C,连接CD,BC,四边形ABCD即为所求.
【详解】
如图所示.
本题考查作图-复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
25、(1)见解析,(2)表中组距是20次,组数是7组;(3)31人,50人;(4)26%
【解析】
(1)利用分布表和频数分布直方图可得到成绩在60≤x≤80的人数为2人,,成绩在160≤x≤180的人数为4人,然后补全补全频数分布表和频数分布直方图;
(2)利用频数分布表和频数分布直方图求解;
(3)把和的频数相加可得到跳绳次数在100≤x<140范围的学生数,把全部7组的频数相加可得到全班人数;
(4)用后三组的频数和除以全班人数可得到全班同学跳绳的优秀率.
【详解】
解:(1)如图,成绩在的人数为2人,成绩在的人数为4人,
(2)观察图表即可得:表中组距是20次,组数是7组;
(3)∵的人数为18人,的人数为13人,
∴跳绳次数在范围的学生有18+13=31(人),
全班人数为 (人)
(4)跳绳次数不低于140次的人数为,
所以全班同学跳绳的优秀率.
本题考查了频(数)率分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
26、证明见解析.
【解析】
根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG≌△CFH,得出对应边相等即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,
∵E、F分别为AD、BC边的中点,
∴AE=DE=AD,CF=BF=BC,
∴DE∥BF,DE=BF,
∴四边形BFDE是平行四边形,
∴BE∥DF,∴∠AEG=∠ADF,
∴∠AEG=∠CFH,
在△AEG和△CFH中,
∵∠EAG=∠FCH,AE=CF,∠AEG=∠CFH,
∴△AEG≌△CFH(ASA),
∴AG=CH.
题号
一
二
三
四
五
总分
得分
环数/环
7
8
9
10
人数/人
4
2
3
1
每天使用零花钱情况
单位(元
2
3
4
5
人数
1
5
2
2
甲
乙
丙
丁
平均数(cm)
185
180
185
180
方差
3.6
3.6
7.4
8.1
种类
一日票
二日票
三日票
五日票
七日票
单价(元/张)
20
30
40
70
90
次数
频数
4
18
13
8
1
2024-2025学年安徽省沿淮教育联盟九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年安徽省沿淮教育联盟九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省铜陵市枞阳县数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年安徽省铜陵市枞阳县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省濉溪县九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年安徽省濉溪县九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。