2024-2025学年北京丰台九上数学开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)上复习课时李老师叫小聪举出一些分式的例子,他举出了: ,,其中正确的个数为( ).
A.2B.3C.4D.5
2、(4分)为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是( )
A.220,220B.220,210C.200,220D.230,210
3、(4分)已知一次函数的图象如图所示,当时,y的取值范围是
A.
B.
C.
D.
4、(4分)某企业今年一月工业产值达20亿元,前三个月总产值达90亿元,求第二、三月份工业产值的月平均增长率.设月平均增长率为,则由题意可得方程( )
A.B.
C.D.
5、(4分)若代数式在实数范围内有意义,则x的取值范围是( )
A.x≥﹣2B.x>﹣2C.x≥2D.x≤2
6、(4分)已知是一次函数的图象上的两个点,则的大小关系是( )
A.B.C.D.不能确定
7、(4分)如图,、分别是、的中点,过点作∥交的延长线于点,则下列结论正确的是 ( )
A.B.
C. <D.>
8、(4分)把多项式ax3﹣2ax2+ax分解因式,结果正确的是( )
A.ax(x2﹣2x)B.ax2(x﹣2)
C.ax(x+1)(x﹣1)D.ax(x﹣1)2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,P(2,﹣3)关于x轴的对称点是_____
10、(4分)如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是 .
11、(4分)在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形 、正方形 、…、正方形,使得点 …在直线l上,点 …在y轴正半轴上,则点 的横坐标是__________________。
12、(4分)如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2, ……,按如图的方式放置.点A1,A2,A3,……和点C1,C2,C3……分别在直线y=x +1和x轴上,则点A6的坐标是____________.
13、(4分)已知关于x的分式方程=1的解是非负数,则m的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值,从-1、1、2中选择一个你喜欢的且使原式有意义的的值代入求值.
15、(8分)已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.
16、(8分)在平面直角坐标系内,已知.
(1)点A的坐标为(____,______);
(2)将绕点顺时针旋转度.
①当时,点恰好落在反比例函数的图象上,求的值;
②在旋转过程中,点能否同时落在上述反比例函数的图象上,若能,求出的值;若不能,请说明理由.
17、(10分) (1)计算:
(2)先化简,再求值:,其中
18、(10分)如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).
(1)求点A,B,D的坐标;
(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一个一元二次方程,它的二次项系数为1,两根分别是2和3,则这个方程是______.
20、(4分)植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有_____棵.
21、(4分)一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为_____.
22、(4分)一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_____.
23、(4分)如图,是菱形的对角线上一点,过点作于点. 若,则点到边的距离为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)我市为加强学生的安全意识,组织了全市学生参加安全知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题。
(1)一共抽取了___个参赛学生的成绩;表中a=___;
(2)补全频数分布直方图;
(3)计算扇形统计图中“B”对应的圆心角度数;
(4)某校共2000人,安全意识不强的学生(指成绩在70分以下)估计有多少人?
25、(10分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
(3)结合图像写出不等式的解集;
26、(12分)观察下列各式子,并回答下面问题.
第一个:
第二个:
第三个:
第四个:…
(1)试写出第个式子(用含的表达式表示),这个式子一定是二次根式吗?为什么?
(2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.
【详解】
解:在,中,是分式,只有3个,
故选:B.
本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.
2、A
【解析】
由题意知,200,210,210,210,220,220,220,220,230,230,230,故众数中位数都是220,
故选A.
3、D
【解析】
观察图象得到直线与x轴的交点坐标为(2,1),且图象经过第一、三象限, y随x的增大而增大,所以当x<2时,y<1.
【详解】
解:∵一次函数y=kx+b与x轴的交点坐标为(2,1),且图象经过第一、三象限,
∴y随x的增大而增大,
∴当x<2时,y<1.
故选:D.
本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠1)的图象为直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小.
4、C
【解析】
设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达1亿元,可列方程求解.
【详解】
设月平均增长率的百分数为x,
20+20(1+x)+20(1+x)2=1.
故选:C.
此题考查一元二次方程的应用,解题关键看到是一季度的和做为等量关系列出方程.
5、C
【解析】
根据二次根式的性质,被开方数大于等于0,就可以求解.
【详解】
解:根据题意得:x﹣1≥0,
解得:x≥1.
故选:C.
本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.
6、C
【解析】
将点的坐标代入解析式求得y1=1-1=0,y1=-1-1=-1,然后进行大小比较即可.
【详解】
解:∵P1(-1,y1)、P1(1,y1)是y=-x-1的图象上的两个点,
∴y1=1-1=0,y1=-1-1=-1,
∵0>-1,
∴y1>y1.
故选:C.
本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.
7、B
【解析】
首先根据E是AC的中点得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.
【详解】
∵E为AC中点,
∴AE=EC,
∵CF∥BD,
∴∠ADE=∠F,
在△ADE和△CFE中,
∵,
∴△ADE≌△CFE(AAS),
∴DE=FE.
故选B.
本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.
8、D
【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.
【详解】
原式=ax(x2﹣2x+1)=ax(x﹣1)2,
故选D.
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(2,1)
【解析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.
【详解】
点P(2,﹣1)关于x轴的对称点的坐标是(2,1),
故答案为:2,1.
本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容,比较简单.
10、24.
【解析】
试题分析: ∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB=∠DAB,∠PBA=∠ABC,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AB∥CD,∴∠PAB=∠DPA,∴∠DAP=∠DPA,∴AD=DP=5,同理:PC=CB=5,
即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24.
考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形.
11、
【解析】
根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得所求点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标.
【详解】
∵观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,
∴An(2n-1,2n-1-1)(n为正整数).
观察图形可知:点Bn是线段CnAn+1的中点,
∴点Bn的坐标是(2n-1,2n-1).
故答案为.
此题考查一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“An(2n-1,2n-1-1)(n为正整数)”是解题的关键.
12、(31,32)
【解析】
分析:
由题意结合图形可知,从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,由此可得点An的纵坐标是,根据点An在直线y=x+1上可得点An的横坐标为,由此即可求得A6的坐标了.
详解:
由题意结合图形可知:从左至右的第1个正方形的边长是1,第2个正方形的边长是2,第3个正方形的边长是4,……,第n个正方形的边长是,
∵点An的纵坐标是第n个正方形的边长,
∴点An的纵坐标为,
又∵点An在直线y=x+1上,
∴点An的横坐标为,
∴点A6的横坐标为:,点A6的纵坐标为:,
即点A6的坐标为(31,32).
故答案为:(31,32).
点睛:读懂题意,“弄清第n个正方形的边长是,点An的纵坐标与第n个正方形边长间的关系”是解答本题的关键.
13、m≥1
【解析】
由分式方程的解为非负数得到关于m的不等式,进而求出m的范围即可.
【详解】
解:分式方程去分母得:m=x+1,
即x=m-1,
由分式方程的解为非负数,得到
m-1≥0,且m-1≠-1,
解得:m≥1,
故答案为m≥1.
本题考查了分式方程的解,在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
三、解答题(本大题共5个小题,共48分)
14、4
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=
=x+2,
由分式有意义的条件可知:x=2,
∴原式=4,
本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
15、证明见解析.
【解析】
由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,继而可利用ASA判定△AOE≌△COF,继而证得OE=OF.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,OA=OC,
∴∠OAE=∠OCF,
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF.
此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
16、(1)A(-1,);(2)①;②,理由见解析
【解析】
(1)作AC⊥x轴于点C,在直角△AOC中,利用三角函数即可求得AC、OC的长度,则A的坐标即可求解;
(2)①当a=30时,点B的位置与A一定关于y轴对称,在B的坐标可以求得,利用待定系数法即可求得反比例函数的解析式;
②当=60°时,旋转后点的横纵坐标正好互换,则一定都在反比例函数的图象上.
【详解】
解:(1)作AC⊥x轴于点C,
在直角△AOC中,∠AOC=90°-∠AOB=60°,
则AC=OA•sin∠AOC=2×=,OC=OA•cs60°=2×=1,
则A的坐标是(-1,);
(2)①当=30°时,B的坐标与A(-1,)一定关于y轴对称,
则旋转后的点B(1,).
把(1,)代入函数解析式得:k=;
②当=60°时,旋转后点A(1,),点B(,1),
∵xy=,
∴当=60°,A、B能同时落在上述反比例函数的图象上.
本题是反比例函数与图形的旋转,三角函数的综合应用,正确求得A的坐标是关键.
17、 (1) 9−;(2) .
【解析】
(1)首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.
(2)首先化简,然后把x的值代入化简后的算式即可.
【详解】
(1) =8+2− −1=9−
(2)
=
=
=
x=4−2sin30°=4−2× =3
∴原式= =
此题考查实数的运算,分式的化简求值,零指数幂,负整数指数幂,解题关键在于掌握运算法则
18、(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).
【解析】
(1)由于一次函数y=2x+4的图象与x、y轴分别交于点A、B,所以利用函数解析式即可求出A、B两点的坐标,然后作DF⊥x轴于点F,由四边形ABCD是正方形可以得到∠BAD=∠AOB=∠AFD=90º,AB=AD,接着证明△BAO≌△ADF,最后利用全等三角形的性质可以得到DF=AO=2,AF=BO=4,从而求出点D的坐标;
(2) 过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,用求点D的方法求得点C的坐标为(4,2),得出OC=2,由A、B的坐标得到AB=2,从而OC=AB=AD,根据△ADE与△COM全等,利用全等三角形的性质可知OM=AE,即OA=EM=2,利用C、D的坐标求出直线CD的解析式,得出点E的坐标,根据EM=2,即可求出点M的坐标.
【详解】
解:(1)∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,
∴A(-2,0),B(0,4),
∴OA=2,OB=4,
如图1,过点D作DF⊥x轴于F,
∴∠DAF+∠ADF=90°,
∵四边形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∴∠DAF+∠BAO=90°,
∴∠ADF=∠BAO,
在△ADF和△BAO中,,
∴△ADF≌△BAO(AAS),
∴DF=OA=2,AF=OB=4,
∴OF=AF-OA=2,
∵点D落在第四象限,
∴D(2,-2);
(2)如图2,过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,
同(1)求点D的方法得,C(4,2),
∴OC==2,
∵A(-2,0),B(0,4),
∴AB=2,
∵四边形ABCD是正方形,
∴AD=AB=2=OC,
∵△ADE与△COM全等,且点M在x轴上,
∴△ADE≌△OCM,
∴OM=AE,
∵OM=OE+EM,AE=OE+OA,
∴EM=OA=2,
∵C(4,2),D(2,-2),
∴直线CD的解析式为y=2x-6,
令y=0,
∴2x-6=0,
∴x=3,
∴E(3,0),
∴OM=5,
∴M(5,0).
故答案为(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).
本题考查了一次函数图象上点的坐标特征,正方形的性质,全等三角形的判定与性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设方程为ax2+bx+c=0,则由已知得出a=1,根据根与系数的关系得,2+3=−b,2×3=c,求出即可.
【详解】
∵二次项系数为1的一元二次方程的两个根为2,3,
∴2+3=−b,2×3=c,
∴b=-5,c=6
∴方程为,
故答案为:.
本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.
20、121
【解析】
设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.
【详解】
设市团委组织部分中学的团员有x人,则树苗有(4x+37)棵,由题意得1(4x+37)-6(x-1)<3,去括号得:1-2x+43<3,移项得:-42-2x<-40,解得:20
21、20(1﹣20%)(1﹣x)2=11.1.
【解析】
设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为20(1-20%)(1-x)元,第三年折旧后的而价格为20(1-20%)(1-x)2元,与第三年折旧后的价格为11.1万元建立方程.
【详解】
设这辆车第二、三年的年折旧率为x,有题意,得
20(1﹣20%)(1﹣x)2=11.1.
故答案是:20(1﹣20%)(1﹣x)2=11.1.
一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.1万元建立方程是关键.
22、1
【解析】
根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO的长,即可求BO的长,根据BO的长即可求BD的长.
【详解】
如图,由题意知,AB=5,AC=6,
∴AO=OC=3,
∵菱形对角线互相垂直平分,
∴△ABO为直角三角形,
在Rt△ABO中,AB=5,AO=3,
∴BO==4,
故BD=2BO=1,
故答案为: 1.
本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.
23、4
【解析】
首先根据菱形的性质,可得出∠ABD=∠CBD,然后根据角平分线的性质,即可得解.
【详解】
解:∵四边形ABCD为菱形,BD为其对角线
∴∠ABD=∠CBD,即BD为角平分线
∴点E到边AB的距离等于EF,即为4.
此题主要考查菱形和角平分线的性质,熟练运用,即可解题.
二、解答题(本大题共3个小题,共30分)
24、(1)40,6;(2)见解析;(3)72°;(4)300.
【解析】
(1)利用总人数与个体之间的关系解决问题即可.
(2)根据频数分布表画出条形图即可解决问题.
(3)利用圆心角=360°×百分比计算即可解决问题.
(4)根据成绩在70分以下的百分比乘以总人数即可.
【详解】
(1)抽取的学生成绩有14÷35%=40(个),
则a=40−(8+12+14)=6,
故答案为:40,6;
(2)直方图如图所示:
(3)扇形统计图中“B”的圆心角=360°× =72°.
(4) 成绩在70分以下: =300(人).
此题考查频数分布直方图,扇形统计图,解题关键在于看懂图中数据.
25、(1)y=,y=-x+1;(3)点E的坐标为(0,5)或(0,4);(3)0<x<3或x>13
【解析】
(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线,求出k、b的值,从而得出一次函数的解析式;
(3)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,1),得出PE=|m﹣1|,根据S△AEB=S△BEP﹣S△AEP=3,求出m的值,从而得出点E的坐标.
(3)根据函数图象比较函数值的大小.
【详解】
解:(1)把点A(3,6)代入y=,得m=13,则y=.
得,解得把点B(n,1)代入y=,得n=13,则点B的坐标为(13,1).
由直线y=kx+b过点A(3,6),点B(13,1),
则所求一次函数的表达式为y=﹣x+1.
(3)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,1).∴PE=|m﹣1|.
∵S△AEB=S△BEP﹣S△AEP=3,∴×|m﹣1|×(13﹣3)=3.
∴|m﹣1|=3.∴m1=5,m3=4.∴点E的坐标为(0,5)或(0,4).
(3)根据函数图象可得的解集:或;
考核知识点:反比例函数和一次函数的综合运用.熟记函数性质是关键.
26、(1),该式子一定是二次根式,理由见解析;(2)在15和16之间.理由见解析.
【解析】
(1)依据规律可写出第n个式子,然后判断被开方数的正负情况,从而可做出判断;
(2)将代入,得出第16个式子为,再判断即可.
【详解】
解:(1),
该式子一定是二次根式,
因为为正整数,,所以该式子一定是二次根式
(2)
∵,,
∴.
∴在15和16之间.
本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.
题号
一
二
三
四
五
总分
得分
2024-2025学年安徽省宣城市宣州区雁翅学校数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年安徽省宣城市宣州区雁翅学校数学九上开学复习检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】: 这是一份2024-2025学年安徽省宿州市宿城一中学数学九上开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省宿州第九中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年安徽省宿州第九中学数学九上开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。