|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年福建省福州仓山区七校联考九年级数学第一学期开学教学质量检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年福建省福州仓山区七校联考九年级数学第一学期开学教学质量检测模拟试题【含答案】01
    2024-2025学年福建省福州仓山区七校联考九年级数学第一学期开学教学质量检测模拟试题【含答案】02
    2024-2025学年福建省福州仓山区七校联考九年级数学第一学期开学教学质量检测模拟试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年福建省福州仓山区七校联考九年级数学第一学期开学教学质量检测模拟试题【含答案】

    展开
    这是一份2024-2025学年福建省福州仓山区七校联考九年级数学第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)函数的自变量的取值范围是( )
    A.B.C.D.
    2、(4分)如图,在正方形ABCD的外侧,以AD为边作等边△ADE,连接BE,则∠AEB的度数为 ( )
    A.15°B.20°C.25°D.30°
    3、(4分)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是( )
    A.B.C.D.
    4、(4分)如图,在中,下列结论错误的是()
    A.B.C.D.
    5、(4分)下列二次根式化简的结果正确的是( )
    A.B.C.D.
    6、(4分)下列说法正确的是( )
    A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形
    B.平行四边形既是中心对称图形,又是轴对称图形
    C.对角线相等的四边形是矩形
    D.只要是证明两个直角三角形全等,都可以用“HL”定理
    7、(4分)下列事件中,属于随机事件的是()
    A.没有水分,种子发芽;B.小张买了一张彩票中500万大奖;
    C.抛一枚骰子,正面向上的点数是7;D.367人中至少有2人的生日相同.
    8、(4分)将直线y=-2x-3怎样平移可以得到直线y=-2x的是( )
    A.向上平移2个单位B.向上平移3个单位
    C.向下平移2个单位D.向下平移3个单位
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠BPN=_____度.
    10、(4分)如图,矩形ABCD中,AB=6,BC=8,点F为BC边上的一个动点,把△ABF沿AF折叠。当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为___.
    11、(4分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如,3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12…,因此3,5,7,8…都是“智慧数”在正整数中,从1开始,第2018个智慧数是_____.
    12、(4分)根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣,则输出的结果为_____
    13、(4分)已知点P(3﹣m,m)在第二象限,则m的取值范围是____________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠1.
    (1)求证:四边形ABCD是矩形;(1)若∠BOC=110°,AB=4cm,求四边形ABCD的面积.
    15、(8分)A城有肥料200t,B城有肥料300t.现要把这些肥料全部运往C、D两乡,C乡需要肥料240t,D乡需要肥料260t,其运往C、D两乡的运费如下表:
    设从A城运往C乡的肥料为xt,从A城运往两乡的总运费为y1元,从B城运往两乡的总运费为y2元.
    (1)分别写出y1、y2与x之间的函数关系式(不要求写自变量的取值范围);
    (2)试比较A、B两城总运费的大小;
    (3)若B城的总运费不得超过3800元,怎样调运使两城总费用的和最少?并求出最小值.
    16、(8分)城有肥料吨,城有肥料吨,现要把这些肥料全部运往、两乡.从城运往、两乡运肥料的费用分别是每吨元和元,从城往、两乡运肥料的费用分别为每吨元和元,现在乡需要肥料吨,乡需要肥料吨,设城运往乡的肥料量为吨,总运费为元.
    (1)写出总运费元与之间的关系式;
    (2)当总费用为元,求从、城分别调运、两乡各多少吨?
    (3)怎样调运化肥,可使总运费最少?最少运费是多少?
    17、(10分)如图,过点A(0,3)的一次函数y1=kx+b(k≠0)的图象与正比例函数y2=2x的图象相交于点B,且点B的横坐标是1.
    (1)求点B的坐标及k、b的值;
    (2)若该一次函数的图象与x轴交于D点,求△BOD的面积
    (3)当y1≤y2时,自变量x的取值范围为 .
    18、(10分)已知一次函数的图象经过点(-4,-9),(3,5)和(a,6),求a的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知AD是△ABC的中线,,,那么_________;
    20、(4分)设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=_____.
    21、(4分)在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为_____.
    22、(4分)将二次根式化为最简二次根式的结果是________________
    23、(4分)如图,在平面直角坐标系xOy中,平行四边形ABCD的四个顶点A,B,C,D是整点(横、纵坐标都是整数),则平行四边形ABCD的面积是_____
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,在矩形纸片ABCD中,AB=8,BC=16,将矩形纸片沿EF折叠,使点C与点A重合.
    (1)判断△AEF的形状,并说明理由;
    (2)求折痕EF的长度;
    (3)如图2,展开纸片,连接CF,则点E到CF的距离是 .
    25、(10分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.
    26、(12分)化简:,再从不等式中选取一个合适的整数代入求值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据分母为零无意义,可得答案.
    【详解】
    解:由题意,得,
    解得,
    故选:B.
    本题考查了函数自变量的取值范围,利用分母不等于零得出不等式是解题关键.
    2、A
    【解析】
    根据△ADE为等边三角形,即可得出AE=AD,则AE=AB,由此可以判断△ABE为等腰三角形. △ADE为等边三角形,则∠DAE=60°,由此可以得出∠BAE=150°,根据△ABE为等腰三角形,即可得出∠AEB的度数.
    【详解】
    ∵△ADE为等边三角形,
    ∴AE=AD、∠DAE=60°,
    ∵四边形ABCD为正方形,则AB=AD,
    ∴AE=AB,
    则△ABE为等腰三角形,
    ∴∠AEB=∠ABE= ===15°,
    则答案为A .
    解决本题的关键在于得出△ABE为等腰三角形,再根据等腰三角的性质得出∠AEB的读数.
    3、D
    【解析】
    根据图像分析不同时间段的水面上升速度,进而可得出答案.
    【详解】
    已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选D.
    能够根据条件分析不同时间段的图像是什么形状是解答本题的关键.
    4、D
    【解析】
    根据平行四边形的对边平行和平行线的性质即可一一判断.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB=CD,∠BAD=∠BCD,(平行四边形的对边相等,对角相等)故B、C正确.
    ∵四边形ABCD是平行四边形,
    ∴AB∥BC,
    ∠1=∠2,故A正确,
    故只有∠1=∠3错误,
    故选:D.
    此题考查平行四边形的性质,解题关键在于掌握平行四边形的对边相等;平行四边形的对角相等;平行四边形的对边平行.
    5、B
    【解析】
    二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.
    【详解】
    解:,故A错误;
    ,故B正确;
    ,故C错误;
    ,故D错误.
    故选:.
    本题考查了二次根式化简,熟练掌握化简二次根式是解题的关键.
    6、A
    【解析】
    根据三角形中位线定理可判定出顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形;平行四边形是中心对称图形,不是轴对称图形;对角线相等的平行四边形是矩形;证明两个直角三角形全等的方法不只有HL,还有SAS,AAS,ASA.
    【详解】
    A.顺次连接任意一个四边形四边的中点,所得到的四边形一定是平行四边形,说法正确;
    B.平行四边形是中心对称图形,不是轴对称图形,原说法错误;
    C.对角线相等的平行四边形是矩形,原说法错误;
    D.已知两个直角三角形斜边和直角边对应相等,可以用“HL”定理证明全等,原说法错误.
    故选A.
    本题考查了中心对称图形、直角三角形全等的判定、矩形的判定、中点四边形,关键是熟练掌握各知识点.
    7、B
    【解析】
    A选项中,因为“没有水分,种子发芽”是“确定事件中的不可能事件”,所以不能选A;
    B选项中,因为“小张买了一张彩票中500万大奖”是“随机事件”,所以可以选B;
    C选项中,因为“抛一枚骰子,正面向上的点数是7”是“确定事件中的不可能事件”,所以不能选C;
    D选项中,因为“367人中至少有2人的生日相同”是“确定事件中的必然事件”,所以不能选D.
    故选B.
    8、B
    【解析】
    根据上加下减,左加右减的平移原则,即可得出答案.
    【详解】
    解:根据上加下减的平移原则,直线y=-2x可以看作是由直线y=-2x-3向上平移3个单位得到的;
    故选B.
    本题考查一次函数图象与几何变换,属于基础题,关键是掌握上加下减,左加右减的平移原则.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据折叠的性质知:可知:BN=BP,再根据∠BNP=90°即可求得∠BPN的值.
    【详解】
    根据折叠的性质知:BP=BC,
    ∴BN=BC=BP,
    ∵∠BNP=90°,
    ∴∠BPN=1°,
    故答案为:1.
    本题考查了正方形的性质、翻折变换(折叠问题)等知识,熟练掌握相关的性质及定理是解题的关键.
    10、2 或9−3.
    【解析】
    分两种情况考虑:B′在横对称轴上与B′在竖对称轴上,分别求出BF的长即可.
    【详解】
    当B′在横对称轴上,此时AE=EB=3,如图1所示,
    由折叠可得△ABF≌△AB′F
    ∴∠AFB=∠AFB′,AB=AB′=6,BF=B′F,
    ∴∠B′MF=∠B′FM,
    ∴B′M=B′F,
    ∵EB′∥BF,且E为AB中点,
    ∴M为AF中点,即EM为中位线,∠B′MF=∠MFB,
    ∴EM=BF,
    设BF=x,则有B′M=B′F=BF=x,EM=x,即EB′=x,
    在Rt△AEB′中,根据勾股定理得:3 +(x) =6,
    解得:x=2 ,即BF=2;
    当B′在竖对称轴上时,此时AM=MD=BN=CN=4,如图2所示:
    设BF=x,B′N=y,则有FN=4−x,
    在Rt△FNB′中,根据勾股定理得:y+(4−x) =x,
    ∵∠AB′F=90°,
    ∴∠AB′M+∠NB′F=90°,
    ∵∠B′FN+∠NB′F=90°,
    ∴∠B′FN=∠AB′M,
    ∵∠AMB′=∠B′NF=90°,
    ∴△AMB′∽△B′NF,
    ∴ ,即,
    ∴y= x,
    ∴(x) +(4−x) =x,
    解得x=9+3 ,x=9−3,
    ∵9+3>4,舍去,
    ∴x=9−3
    所以BF的长为2或9−3,
    故答案为:2 或9−3.
    此题考查翻折变换(折叠问题),解题关键在于作辅助线
    11、1693
    【解析】
    如果一个数是智慧数,就能表示为两个正整数的平方差,设这两个数分别m、n,设m>n,即智慧数=m1-n1=(m+n)(m-n),因为m,n是正整数,因而m+n和m-n就是两个自然数.要判断一个数是否是智慧数,可以把这个数分解因数,分解成两个整数的积,看这两个数能否写成两个正整数的和与差.
    【详解】
    解:1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数1k+1,有1k+1=(k+1)1-k1(k=1,1,…).所以大于1的奇正整数都是“智慧数”.
    对于被4整除的偶数4k,有4k=(k+1)1-(k-1)1(k=1,3,…).
    即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.
    对于被4除余1的数4k+1(k=0,1,1,3,…),设4k+1=x1-y1=(x+y)(x-y),其中x,y为正整数,
    当x,y奇偶性相同时,(x+y)(x-y)被4整除,而4k+1不被4整除;
    当x,y奇偶性相异时,(x+y)(x-y)为奇数,而4k+1为偶数,总得矛盾.
    所以不存在自然数x,y使得x1-y1=4k+1.即形如4k+1的数均不为“智慧数”.
    因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.
    因为1017=(1+3×671),4×(671+1)=1691,
    所以1693是第1018个“智慧数”,
    故答案为:1693.
    本题考查平方差公式,有一定的难度,主要是对题中新定义的理解与把握.
    12、-1.5
    【解析】
    ∵-2<<1,
    ∴x=时,y=x-1=,
    故答案为.
    13、m>3.
    【解析】
    试题分析:因为点P在第二象限,所以,,解得:
    考点:(1)平面直角坐标;(2)解不等式组
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(1)
    【解析】
    (1)因为∠1=∠1,所以BO=CO,1BO=1CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;
    (1)在△BOC中,∠BOC=110°,则∠1=∠1=30°,AC=1AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.
    【详解】
    (1)证明:∵∠1=∠1,
    ∴BO=CO,即1BO=1CO.
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=OD,
    ∴AC=1CO,BD=1BO,
    ∴AC=BD.
    ∵四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形;
    (1)在△BOC中,∵∠BOC=110°,
    ∴∠1=∠1=(180°-110°)÷1=30°,
    ∴在Rt△ABC中,AC=1AB=1×4=8(cm),
    ∴BC=(cm).
    ∴四边形ABCD的面积=4(cm1)
    此题把矩形的判定、勾股定理和平行四边形的性质结合求解.考查学生综合运用数学知识的能力.解决本题的关键是读懂题意,得到相应的四边形的各边之间的关系.
    15、(1)y1=−10x+6000,y2=5x+1(2)x=180时,y1=y2;x>180时,y1<y2;x<180时,y1>y2;(3)当从A城调往C乡肥料100t,调往D乡肥料100t,从B城调往C乡肥料140t,调往D乡肥料160t,两城总费用的和最少,最小值为2元.
    【解析】
    (1)根据题意即可得出y1、y2与x之间的函数关系式;
    (2)根据(1)的结论列方程或列不等式解答即可;
    (3)设两城总费用为y,根据(1)的结论得出y与x之间的函数关系式,根据题意得出x的取值范围,再根据一次函数的性质解答即可.
    【详解】
    (1)根据题意得:y1=20x+30(200−x)=−10x+6000,
    y2=10(240−x)+15(300−240+x)=5x+1.
    (2)若y1=y2,则−10x+6000=5x+1,解得x=180,
    A、B两城总费用一样;
    若y1<y2,则−10x+6000<5x+1,解得x>180,
    A城总费用比B城总费用小;
    若y1>y2,则−10x+6000>5x+1,解得0<x<180,
    B城总费用比A城总费用小.
    (3)依题意得:5x+1≤3800,
    解得x≤100,
    设两城总费用为W,则W=y1+y2=−5x+9300,
    ∵−5<0,
    ∴W随x的增大而减小,
    ∴当x=100时,W有最小值2.
    200−100=100(t),240−100=140(t),100+60=160(t),
    答:当从A城调往C乡肥料100t,调往D乡肥料100t,从B城调往C乡肥料140t,调往D乡肥料160t,两城总费用的和最少,最小值为2元.
    本题考查了一次函数的应用.根据题意列出一次函数解析式是关键.注意到(2)需分类讨论.
    16、(1);(2)城运往乡的肥料量为吨,城运往乡的肥料量为吨,城运往的肥料量分别为吨,城运往的肥料量分别为吨;(3)从城运往乡吨,运往乡吨;从城运往乡吨,运往乡吨,此时总运费最少,总运费最小值是元
    【解析】
    (1)设C城运往A乡的化肥为x吨,表示出A城运往D乡的化肥为吨,B城运往C乡的化肥为吨,B城运往D乡的化肥为吨,总运费为y,然后根据总运费的表达式列式整理,再根据运往各地的肥料数不小于0列式求出x的取值范围即可.
    (2)将代入(1)中求得的关系式,即可完成.
    (3)利用(1)中求得的关系式,根据一次函数的增减性解答即可.
    【详解】
    解:(1)设总运费为元,城运往乡的肥料量为吨,则运往乡的肥料量为吨;城运往C、D乡的肥料量分别为吨和吨.由总运费与各运输量的关系可知,反映与之间的函数关系为
    化简,得
    (2)将代入得:,解得:,
    ,,,
    从城运往乡的肥料量为吨,城运往乡的肥料量为吨,城运往的肥料量分别为吨,城运往的肥料量分别为吨.
    (3),

    随的增大而增大,
    当时,
    从城运往乡吨,运往乡吨;从城运往乡吨,运往乡吨,此时总运费最少,总运费最小值是元.
    本题考查了一次函数的应用,主要是运用待定系数法求关系式以及利用一次函数的增减性求最值问题,难点在于表示出运往各地的化肥吨数.
    17、(1)B(1,2),,;(2)△BOD的面积3;(3)x≥1.
    【解析】
    (1)先利用正比例函数解析式确定B点坐标,然后利用待定系数法求一次函数解析式,从而得到k、b的值;
    (2)先确定D点坐标,然后利用三角形面积公式计算△BOD的面积;
    (3)结合函数图象,写出自变量x的取值范围.
    【详解】
    (1)当x=1时,y2=2x=2,则B(1,2),
    把A(0,3),B(1,2)代入y=kx+b得
    ,解得,
    所以一次函数解析式为y=-x+3;
    (2)当x=0时,-x+3=0,解得x=3,则D(3,0),
    所以△BOD的面积=×3×2=3;
    (3)当y1≤y2时,自变量x的取值范围为x≥1.
    故答案为x≥1.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    18、
    【解析】
    设函数解析式为y=kx+b,将两点代入可求出k和b的值,进而可得出直线解析式.将点(a,6)代入可得关于a的方程,解出即可.
    【详解】
    设一次函数的解析式y=ax+b,
    ∵图象过点(3,5)和(-4,-9),
    将这两点代入得:

    解得:k=2,b=-1,
    ∴函数解析式为:y=2x-1;
    将点(a,6)代入得:2a-1=6,
    解得:.
    本题考查待定系数法求一次函数解析式,属于比较基础的题,注意待定系数法的掌握,待定系数法是中学数学一种很重要的解题方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    【分析】根据向量的加法运算法则可求出结果.
    【详解】因为AD是△ABC的中线,所以BD=DC,即 ,又因为-==,所以,.
    故答案为
    【点睛】本题考核知识点:向量的计算.解题关键点:熟记向量的计算法则.
    20、-1
    【解析】
    根据一元二次方程根与系数的关系即可得出m+n=﹣2,mn=﹣1,将其代入m+n+mn中即可求出结论.
    【详解】
    ∵m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,
    ∴m+n=﹣2,mn=﹣1,
    则m+n+mn=﹣2﹣1=﹣1.
    故答案为:﹣1.
    本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.
    21、24
    【解析】
    设其余两边长分别为、,根据勾股定理列出方程,解方程求出,计算即可.
    【详解】
    设其余两边长分别为、,
    由勾股定理得,,
    整理得,,
    解得,(舍去),,
    则其余两边长分别为、,
    则这个三角形的周长.
    故答案为:.
    本题考查的是勾股定理,如果直角三角形的两条直角边长分别是、,斜边长为,那么.
    22、4
    【解析】
    直接利用二次根式的性质化简求出答案.
    【详解】

    故答案为:4
    此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.
    23、1
    【解析】
    结合网格特点利用平行四边形的面积公式进行求解即可.
    【详解】
    由题意AD=5,平行四边形ABCD的AD边上的高为3,
    ∴S平行四边形ABCD=5×3=1,
    故答案为:1.
    本题考查了网格问题,平行四边形的面积,熟练掌握网格的结构特征以及平行四边形的面积公式是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)△DEF是等腰三角形,理由见解析;(2);(3)1
    【解析】
    (1)根据折叠和平行的性质,可得∠AEF=∠AFE,即得出结论;
    (2)过点E作EM⊥AD于点M,得出四边形ABEM是矩形,设EC=x,则AE=x,BE=16-x,在Rt△ABE中,利用勾股定理求出x,在Rt△EMF中,用勾股定理即可求得;
    (3)证明四边形AECF是菱形,设点E到CF的距离为h,通过面积相等,即可求得.
    【详解】
    (1)△AEF是等腰三角形.
    理由如下:由折叠性质得∠AEF=∠FEC,
    在矩形ABCD中,AD∥BC,∴∠AFE=∠FEC,
    ∴∠AEF=∠AFE, ∴AF=AE;
    ∴△AEF是等腰三角形;
    故答案为:△AEF是等腰三角形.
    (2)如图,过点E作EM⊥AD于点M,
    则∠AME=90°,
    又∵在矩形ABCD中,∠BAD=∠B=90°,
    ∴四边形ABEM是矩形,
    ∴AM=BE,ME=AB=1,
    设EC=x,则AE=x,BE=16-x,
    在Rt△ABE中,AE2=AB2+BE2,x2=12+(16-x)2,
    解之得x=10,
    ∴EC=AE=10,BE=6,
    ∴AM=6,AF=AE=10,
    ∴MF=AF-AM=4,
    在Rt△EMF中,;
    故答案为:;
    (3)由(1)知,AE=AF=EC,
    ∵AF∥EC,
    ∴四边形AECF是平行四边形,
    ∴四边形AECF是菱形,
    设点E到CF的距离为h,

    ∴h=1.即E到CF的距离为1,
    故答案为:1.
    考查了折叠图形和平行线结合的性质,等腰三角形的判定和性质,勾股定理求角的应用,菱形的判定和性质,等面积法的应用,熟记和掌握几何图形的判定和性质内容是解题的关键.
    25、
    【解析】
    首先过点A作AD⊥BC,根据Rt△ADC和Rt△ABD的勾股定理分别求出CD和BD的长度,从而得出BC的长度
    【详解】
    过点A作AD⊥BC,则△ADC和△ABD为直角三角形
    ∵∠C=30° AC=4cm ∴AD=2cm CD=cm
    根据Rt△ABD的勾股定理可得:BD=cm
    ∴BC=BD+CD=()cm
    本题考查直角三角形的勾股定理,解题关键在于能够构造出直角三角形.
    26、,1
    【解析】
    现将括号内的式子通分,再因式分解,然后约分,化简后将符合题意的值代入即可.
    【详解】
    原式
    选时,原式
    此题考查分式的化简求值、一元一次不等式组的整数解,解题关键在于取合适的整数值求值时,要特注意原式及化简过程中的每一步都有意义.
    题号





    总分
    得分
    批阅人
    C(元/t)
    D(元/t)
    A
    20
    30
    B
    10
    15
    相关试卷

    2024-2025学年福建省福州市第十八中学九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年福建省福州市第十八中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省福州市六校联考九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年福建省福州市六校联考九上数学开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省福州市名校数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年福建省福州市名校数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map