2024-2025学年福建省龙岩市上杭三中学数学九年级第一学期开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.下列说法正确的是( )
A.小明的成绩比小强稳定
B.小明、小强两人成绩一样稳定
C.小强的成绩比小明稳定
D.无法确定小明、小强的成绩谁更稳定
2、(4分)若△ABC∽△DEF且面积比为9:25,则△ABC与△DEF的周长之比为( )
A.9:25B.3:25C.3:5D.2:5
3、(4分)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )
A.35°B.40°C.45°D.50°
4、(4分)多项式x2m﹣xm提取公因式xm后,另一个因式是( )
A.x2﹣1B.xm﹣1C.xmD.x2m﹣1
5、(4分)若点A(–2,)、B( –1,)、C(1,)都在反比例函数(为常数)的图像上,则、、的大小关系为( )
A.B.C.D.
6、(4分)若关于x的不等式组的整数解有3个,则a的取值范围是( )
A.3<a≤4B.2<a≤3C.2≤a<3D.3≤a<4
7、(4分)甲、乙两名同学在初二下学期数学6章书的单元测试中,平均成绩都是86分,方差分别是,,则成绩比较稳定的是( )
A.甲B.乙C.甲和乙一样D.无法确定
8、(4分)已知、是一次函数图象上的两个点,则与的大小关系为( )
A.B.C.D.不能确定与的大小
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,菱形的对角线、相交于点,过点作直线分别与、相交于、两点,若,,则图中阴影部分的面积等于______.
10、(4分)在Rt△ABC中,∠C=90°,△ABC的周长为,其中斜边的长为2,则这个三角形的面积为_____________。
11、(4分)如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为_____m.
12、(4分)如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.
13、(4分)计算=_____,(﹣)2=_____,3﹣=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)平行四边形的 2 个顶点的坐标为,,第三个顶点在 轴上,且与 轴的距离是 3 个单位,求第四个顶点的坐标.
15、(8分)在“国学经典”主题比赛活动中,甲、乙、丙三位同学的三项比赛成绩如下表(单位:分).
(1)若“国学知识”、“现场写作”“经典诵读”分别按30%,20%,50%的比例计入该同学的比赛得分,请分别计算甲、乙两位同学的得分;
(2)若甲同学的得分是80分,乙同学的得分是84分,则丙同学的得分是______分.
16、(8分)定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“快乐分式”.如:,则 是“快乐分式”.
(1)下列式子中,属于“快乐分式”的是 (填序号);
① ,② ,③ ,④ .
(2)将“快乐分式”化成一个整式与一个分子为常数的分式的和的形式为: = .
(3)应用:先化简 ,并求x取什么整数时,该式的值为整数.
17、(10分)为了响应“足球进学校”的号召,某学校准备到体育用品批发市场购买A型号与B型号两种足球,其中A型号足球的批发价是每个200元,B型号足球的批发价是每个250元,该校需购买A,B两种型号足球共100个.
(1)若该校购买A,B两种型号足球共用了22000元,则分别购买两种型号足球多少个?
(2)若该校计划购进A型号足球的数量不多于B型号足球数量的9倍,请求出最省钱的购买方案,并说明理由
18、(10分)如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:
(1)的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是、、的对应点,试画出;
(2)连接,则线段 的位置关系为____,线段的数量关系为___;
(3)平移过程中,线段扫过部分的面积_____.(平方单位)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个不透明的袋中装有3个红球,2个黄球,1个白球,每个球除颜色外都相同,从袋中任意摸出一球,则摸到__________球的可能性最大。(填“红色”、“黄色”或“白色”)
20、(4分)某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是 _________________ 米.
21、(4分)一组数据:23,32,18,x,12,它的中位数是20,则这组数据的平均数为______.
22、(4分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长为_____.
23、(4分)已知a+b=3,ab=﹣4,则a2b+ab2的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数y=1x-4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1,d1.
(1)求点A,B的坐标;
(1)当P为线段AB的中点时,求d1+d1的值;
(3)直接写出d1+d1的范围,并求当d1+d1=3时点P的坐标;
(4)若在线段AB上存在无数个点P,使d1+ad1=4(a为常数),求a的值.
25、(10分)如图,在平面直角坐标系中,菱形的顶点在反比例函数图象上,直线交于点,交正半轴于点,且
求的长:
若,求的值.
26、(12分)先化简,再求值:.其中.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.1.
平均成绩一样,小明的方差小,成绩稳定,
故选A.
本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
错因分析 容易题.失分原因是方差的意义掌握不牢.
2、C
【解析】
根据相似三角形的面积的比等于相似比的平方先求出△ABC与△DEF的相似比,然后根据相似三角形的周长的比等于相似比解答即可.
【详解】
解:∵相似三角形△ABC与△DEF面积的比为9:21,
∴它们的相似比为3:1,
∴△ABC与△DEF的周长比为3:1.
故选:C.
本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.
3、A
【解析】
∵AB=AD, ∴∠ADB=∠B=70°.
∵AD=DC,
∴35°.
故选A.
4、B
【解析】
根据多项式提取公因式的方法计算即可.
【详解】
解:x2m﹣xm=xm(xm-1)
所以另一个因式为xm-1
故选B
本题主要考查因式分解,关键在于公因式的提取.
5、C
【解析】
首先根据可得反比例函数的图象在第一、三象限,因此可得在x的范围内,随着x的增大,y在减小,再结合A、B、C点的横坐标即可得到、、的大小关系.
【详解】
解:根据,可得反比例函数的图象在第一、三象限
因此在x的范围内,随着x的增大,y在减小
因为A、B两点的横坐标都小于0,C点的横坐标大于0
因此可得
故选C.
本题主要考查反比例函数的性质,关键在于判断反比例函数的系数是否大于0.
6、B
【解析】
解第一个不等式可得x<a+1,因关于x的不等式组有解,即1≤x<a+1,又因不等式组的整数解有3个,可得3<a+1≤4,即可得2<a≤3,故选B.
点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
7、A
【解析】
方差决定一组数据的稳定性,方差大的稳定性差,方差小的稳定好.
【详解】
∵,
∴
∴甲同学的成绩比较稳定
故选:A.
本题考查了方差与稳定性的关系,熟知方差小,稳定性好是解题的关键.
8、C
【解析】
先根据一次函数中k=-1判断出函数的增减性,再根据-3<1进行解答即可.
【详解】
解:∵一次函数中k=-1<0,
∴y随x的增大而减小,
∵-3<1,
∴y1>y1.
故选:C.
本题考查一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据菱形的性质可证≌,可将阴影部分面积转化为△AOB的面积,根据菱形的面积公式计算即可.
【详解】
四边形是菱形
∴OC=OA,AB∥CD,
∴
∴≌(ASA)
∴S△CFO= S△AOE
∴S△CFO+ S△EBO= S△AOB
∴S△AOB=SABCD=×
故答案为:.
此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为三角形AOB的面积为解题的关键.
10、0.5
【解析】
首先根据三角形周长及斜边长度求得两直角边的和,再根据勾股定理得出两直角边各自平方数的和的值,再利用完全平方公式得出两直角边的乘积的2倍的值即可求出三角形面积.
【详解】
解:由题意可得AC+BC+AB=,
∵∠C=90°,则AB为斜边等于2,
∴AC+BC=,
再根据勾股定理得出,
根据完全平方公式,
将AC+BC=和代入公式得:,
即=1,
∴Rt△ABC面积=0.5=0.5.
本题考查了勾股定理,解题的关键是利用完全平方公式求得两直角边的乘积的2倍的值.
11、2.2
【解析】
作出图形,利用定理求出BD长,即可解题.
【详解】
解:如图,
在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,
∴AB2=0.72+2.42=6.25,
在Rt△BD中,∠DB=90°, D=2米,BD2+D2=B2,
∴BD2+22=6.25,
∴BD2=2.25,
∵BD0,
∴BD=1.5米,
∴CD=BC+BD=0.7+1.5=2.2米.
本题考查了勾股定理的实际应用,属于简单题,利用勾股定理求出BD的长是解题关键.
12、
【解析】
过P作PH⊥OY于点H,构建含30°角的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,由∠EPH=30°,可得EH的长,从而可得a+2b与OH的关系,确认OH取最大值时点H的位置,可得结论.
【详解】
解:过P作PH⊥OY于点H,
∵PD∥OY,PE∥OX,
∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,
∴EP=OD=a,∠EPH=30°,
∴EH=EP=a,
∴a+2b=2()=2(EH+EO)=2OH,
∴当P在点B处时,OH的值最大,
此时,OC=OA=1,AC==BC,CH=,
∴OH=OC+CH=1+=,此时a+2b的最大值=2×=5.
故答案为5.
本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a+2b的最大值就是确定OH的最大值,即可解决问题.
13、 6 2.
【解析】
根据二次根式的性质化简 和(﹣)2,利用二次根式的加减法计算3﹣.
【详解】
解:=2,(﹣)2=6,3﹣=2.
故答案为2,6,2.
本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
三、解答题(本大题共5个小题,共48分)
14、(4,3),(-4,3),(-2,-3),(4,-3),(-4,-3),(-2,3).
【解析】
试题分析:找第四个顶点,关键是看哪条边为对角线,再者第三个顶点在y轴上,且与x轴的距离是3个单位,本身又有两种情况,所以做题时要考虑周全.
解:(1)当第三个点C1在y轴正半轴时:
AC1为对角线时,第四个点为(﹣4,3);
AB为对角线时,第四个点为(﹣2,﹣3);
BC1为对角线时,第四个点为(4,3).
(2)当第三个点C2在y轴负半轴时:
AC2为对角线时,第四个点为(﹣4,﹣3);
AB为对角线时,第四个点为(﹣2,3);
BC2为对角线时,第四个点为(4,﹣3).
即第4个顶点坐标为:(4,3),(﹣4,3),(﹣2,﹣3),或(4,﹣3),(﹣4,﹣3),(﹣2,3).
【点评】本题主要是对平行四边形的性质与点的坐标的表示等知识的直接考查,同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合.
15、(1)甲:84.8分;乙:1.8分;(2)1.
【解析】
(1)根据加权平均数的定义即可求解;
(2)根据甲乙的分数求出写作的分值占比,再求出丙的分数即可.
【详解】
解:(1)甲:(分);
乙:(分).
答:甲、乙两位同学的得分分别是84.8、1.8分.
(2)∵甲得分80分,乙得分84分,
∴乙比甲多得4分,
∴现场写作的占比为,丙的现场写作比乙多5分,
∴丙的得分为(分).
故答案为:1.
此题主要考查加权平均数的求解与应用,解题的关键是熟知加权平均数的定义.
16、 (1)①②③;(2);(3),x=-3
【解析】
(1)根据快乐分式的定义分析即可;
(2)根据快乐分式的定义变形即可;
(3)先化简,再根据快乐分式的定义变形,然后再根据x的值和分式的值为整数讨论即可.
【详解】
解:(1)①,是快乐分式 ,
② ,是快乐分式,
③ ,是快乐分式,
④ 不是分式,故不是快乐分式.
故答案为:①②③ ;
(2) 原式= = ;
(3)原式=
= =
= =
∵当或 时,分式的值为整数,
∴x的值可以是0或或1或,
又∵分式有意义时,x的值不能为0、1、,
∴
本题考查了新定义运算,以及分式的混合运算.熟练掌握运算法则及快乐分式的定义是解本题的关键.
17、 (1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.
【解析】
(1)设购买A型号足球x个,B型号足球y个,根据总价=单价×数量,结合22000元购买A,B两种型号足球共100个,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,根据总价=单价×数量可得出w关于m的函数关系式,由购进A型号足球的数量不多于B型号足球数量的9倍可得出关于m的一元一次不等式,解之即可得出m的取值范围,再利用一次函数的性质即可解决最值问题.
【详解】
解:(1) 设购买A型号足球x个,B型号足球y个,依题意,得
解之得
答:该校购买A型号足球60个,B型号足球40个;
(2) 设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,
根据题意得w=200m+250(100-m)
=-50m+25000
又∵m≤9(100-m);
∴0
∴w随m的増大而減小
∴当m=90肘w最小
∴最省钱的购买方案为:A型足球90个,B型足球10个.
故答案为:(1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.
本题考查二元一次方程组的应用、一次函数的性质以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量之间的关系,找出w关于m的函数关系式.
18、(1)见解析;(2)平行,相等;(3)1.
【解析】
(1)直接利用平移的性质分别得出对应点位置进而得出答案;
(2)利用平移的性质得出线段AA1、BB1的位置与数量关系;
(3)利用三角形面积求法进而得出答案.
【详解】
解:(1)如图所示:△A1B1C1,即为所求;
(2)线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为:相等.
故答案为:平行,相等;
(3)平移过程中,线段AB扫过部分的面积为:2××3×5=1.
故答案为:1.
此题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、红色
【解析】
可根据概率公式计算出红球、黄球、白球摸到的概率,然后比较即可
【详解】
解:总共有3+2+1=6个球,摸到红球的概率为: ,摸到黄球的概率为:,摸到白球的概率为:,所以红色球的可能性最大.
本题考查可能性的大小,可根据随机等可能事件的概率计算公式分别计算出它们的概率,然后比较即可,也可以列举出所有可能的结果,比较即可.
20、1.
【解析】
在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.
【详解】
解:设旗杆高度为x,则
,
解得x=1.
故答案为:1.
本题考查相似三角形的应用,熟知同一时刻物高与影长成正比是解题关键.
21、1
【解析】
根据23,32,18,x,12,它的中位数是20,可求出x的值,再根据平均数的计算方法计算得出结果即可.
【详解】
解:∵23,32,18,x,12,它的中位数是20,
∴x=20,
平均数为:(23+32+18+20+12)÷5=1,
故答案为:1.
本题考查中位数、平均数的意义和求法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.
22、
【解析】
作AM⊥BC于E,由角平分线的性质得出,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CN−EN=x,再由勾股定理得出方程,解方程即可得出结果.
【详解】
解:作AM⊥BC于E,如图所示:
∵CD平分∠ACB,
∴,
设AC=2x,则BC=3x,
∵MN是BC的垂直平分线,
∴MN⊥BC,BN=CN=x,
∴MN∥AE,
∴,
∴NE=x,
∴BE=BN+EN=x,CE=CN−EN=x,
由勾股定理得:AE2=AB2−BE2=AC2−CE2,
即52−(x)2=(2x)2−(x)2,
解得:x=,
∴AC=2x=;
故答案为.
本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.
23、﹣1
【解析】
直接提取公因式ab,进而将已知代入求出即可.
【详解】
∵a+b=3,ab=-3,
∴a2b+ab2=ab(a+b)=4×(-3)=-1.
故答案为-1
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)A(1,0)B(0,-4);(1)d1+d1=3;(3)当d1+d1=3时点的坐标为点p1(1,1)、p1(,);(4)在线段上存在无数个p点, a=1.
【解析】
(1)对于一次函数解析式,分别令y=0求出x的值,令x=0,求出y的值,即可求出A与B的坐标,
(1)求出P点坐标,即可求出d1+d1的值;.
(3)根据题意确定出d1+d1的范围,设P(m,1m-4),表示出d1+d1,分类讨论m的范围,根据d1+d1=3求出m的值,即可确定出P的坐标;.
(4)设P(m,1m-4),表示出d1与d1,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d1,代入d1+ad1=4,根据存在无数个点P求出a的值即可.
【详解】
(1)如图所示,
令y=0时,x=1, x=0时,y =-4,
∴A(1,0)B(0,-4)
(1)当为线段的中点时,P(,) 即P(1,-1)
∴d1+d1=3
(3)d1+d1≥1
∵P点在一次函数y=1x-4的图象上,故设点P(m,1m-4),
∴d1+d1=︱xp︱+︱yp︱=︱m︱+︱1m-4︱.
由题当d1+d1=3时,根据1m-4=1(m-1)可分析,
当0≤m≤1时,d1+d1=m+4-1m=3,此时解得,m=1∴得点p1(1,1).
当m>1时,同理, d1+d1=m+1m-4=3,解得m=,所以得点p1(,).
当m<0时,d1+d1=-m+4-1m=3,解得m=,即不符合m<0,故此时不存在点p.
综上所述,当d1+d1=3时点的坐标为点p1(1,1)、p1(,).
(4)设点P(m,1m-4),
∴d1=︱1m-4︱,d1=︱m︱,
∵P在线段AB上,且点A(1,0),B(0,-4),
∴0≤m≤1.即d1=4-1m,d1=m.
∵使d1+ad1=4(a为常数),
∴代入数值得4-1m+am=4,即(a-1)m=0,
根据题意在线段上存在无数个p点,所以a=1.
此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,线段中点坐标公式,绝对值的代数意义,以及坐标与图形性质,熟练掌握绝对值的代数意义是解本题的关键.
25、(1)6;(2)4
【解析】
(1)首先利用勾股定理求出EF的长,然后结合题意利用菱形的性质证明出△DOE为等腰三角形,由此求出DO,最后进一步求解即可;
(2)过点A作AN⊥OE,垂足为E,在Rt△AON中,利用勾股定理求出AN的长,然后进一步根据反比例函数的性质求出值即可.
【详解】
(1)∵,
∴EF=,∠OEF=∠OFE=45°,
∵四边形OABC为菱形,
∴OA=AB=BC=OC,OB⊥AC,DO=DB,
∴△DOE为等腰三角形,
∴DO=DE=EF=3,
∴OB=2DO=6;
(2)
如图,过点A作AN⊥OE,垂足为E,则△ANE为等腰直角三角形,
∴AN=NE,
设AN=,则NE=,ON=,
在Rt△AON中,由勾股定理可得:,
解得:,,
当时,A点坐标为:(,),C点坐标为:(,);
当时,C点坐标为:(,),A点坐标为:(,);
∴.
本题主要考查了菱形的性质和等腰三角形性质与判定及勾股定理和反比例函数性质的综合运用,熟练掌握相关概念是解题关键.
26、原式=,又x2+2x-15=0,得x2+2x=15,∴原式=.
【解析】
试题分析:先算括号里面的,再算除法,最后算减法,根据x2+2x-15=0得出x2+2x=15,代入代数式进行计算即可.
试题解析:原式=.
∵x2+2x-15=0,
∴x2+2x=15,
∴原式=.
【点睛】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.
题号
一
二
三
四
五
总分
得分
批阅人
国学知识
现场写作
经典诵读
甲
86
70
90
乙
86
80
90
丙
86
85
90
2024-2025学年福建省永春县第一中学数学九年级第一学期开学调研试题【含答案】: 这是一份2024-2025学年福建省永春县第一中学数学九年级第一学期开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省厦门双十中学数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年福建省厦门双十中学数学九上开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省龙岩市上杭县数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年福建省龙岩市上杭县数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。