2024-2025学年福建省厦门市竹坝学校数学九上开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,若矩形的对角线长为4,则AD的长是( )
A.2B.4C.2D.4
2、(4分)多项式与的公因式是( )
A.B.C.D.
3、(4分)下列各组数是勾股数的是( )
A.B.1,1,C.D.5,12,13
4、(4分)实数的值在( )
A.0与1之间B.1与2之间C.2与3之间D.3与4之间
5、(4分)下列说法正确的是( )
A.了解全国中学生最喜爱哪位歌手,适合全面调查.
B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S甲2=1,S乙2=0.1,则甲麦种产量比较稳.
C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.
D.一组数据:3,2,1,1,4,6的众数是1.
6、(4分)一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=( )
A.60°B.70°C.80°D.90°
7、(4分)某校篮球队队员的年龄分布情况如下表,则该校篮球队队员的平均年龄为( )
A.13岁B.13.5岁C.13.7岁D.14岁
8、(4分)一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,假设每分的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则每分钟的进水量与出水量分别是( )
A.5、2.5B.20、10C.5、3.75D.5、1.25
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差、的大小:_____ (填“>”、“<”或“=”)
10、(4分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为________.
11、(4分)分解因式:___.
12、(4分)在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为_____.
13、(4分)将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为 .
三、解答题(本大题共5个小题,共48分)
14、(12分) (1)如图1,要从电线杆离地面5m处向地面拉一条钢索,若地面钢索固定点A到电线杆底部B的距离为2m,求钢索的长度.
(2)如图2,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=2,求菱形的周长.
15、(8分)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.
(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;
(2)直线经过A(2,3),且与y=x+3垂直,求解析式.
16、(8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如右表格(部分信息未给出):根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
(2)求表中,的值;
(3)若该中学有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?
17、(10分)如图1,在中,,,、分别是、边上的高,、交于点,连接.
(1)求证:;
(2)求的度数;
(3)如图2,过点作交于点,探求线段、、的数量关系,并说明理由.
18、(10分)如图,,,.求证:四边形是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在直角三角形中,若勾为1,股为1.则弦为________.
20、(4分)计算的结果是__________.
21、(4分)化简﹣的结果是_____.
22、(4分)如图,在平行四边形ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC=________ 。
23、(4分)若关于x的二次方程(m+1)x2+5x+m2-3m=4的常数项为0,则m的值为______.
二、解答题(本大题共3个小题,共30分)
24、(8分) “书香校园”活动中,某校同时购买了甲、乙两种图书,已知两种图书的购书款均为360元,甲种图书的单价比乙种图书低50%,甲种图书比乙种图书多4本,甲、乙两种图书的单价分别为多少元?
25、(10分)如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.
(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;
(2)如图2,若DA=DE,求证:BF+DF=AF.
26、(12分)某校八年级学生数学科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:
(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;
(2)若按完成作业、单元检测、期末考试三项成绩按1:2:m的权重,小张的期末评价成绩为81分,则小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据矩形性质得出AC=2AO,BD=2BO,AC=BD=4,推出AO=OB=2,得出等边三角形AOB,可得AB=2,由勾股定理可求AD的长.
【详解】
∵四边形ABCD是矩形,
∴AC=2AO,BD=2BO,AC=BD=4,
∴AO=OB=2,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴∠ABO=60°,AB=2=OA
∴
故选:C.
本题考查了等边三角形的性质和判定,矩形的性质的应用,注意:矩形的对角线互相平分且相等.
2、B
【解析】
直接将原式分别分解因式,进而得出公因式即可.
【详解】
解:∵a2-21=(a+1)(a-1),a2-1a=a(a-1),
∴多项式a2-21与a2-1a的公因式是a-1.
故选:B.
此题主要考查了公因式,正确将原式分解因式是解题的关键.
3、D
【解析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
【详解】
A.()2+()2≠()2不能构成直角三角形,不是正整数,故不是勾股数.
B.()2+()2=()2能构成直角三角形,不是正整数,故不是勾股数;
C.( )2+()2=()2能构成直角三角形,不是正整数,故不是勾股数;
D.()2+()2=()2能构成直角三角形,是正整数,故是勾股数.
故答案选D
此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
4、B
【解析】
直接利用二次根式的估算,的值在1和,即可得出结果.
【详解】
解:∵1<<,
∴实数的值在1与2之间.
故选:B.
此题主要考查了估算无理数大小,正确得出接近的有理数是解题关键.
5、D
【解析】
根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断.
【详解】
A、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用
抽样调查的调查方式,故本选项错误;
、甲乙两种麦种连续3年的平均亩产量的方差为:,,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;
、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;
、.一组数据:3,2,1,1,4,6的众数是1,故本选项正确;.
故选.
本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.
6、B
【解析】
∵六边形ABCDEF的内角和为:180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=430°,
∴∠GBC+∠C+∠CDG=720°-430°=290°,
∴∠G=360°-(∠GBC+∠C+∠CDG)=70°,
故选B.
7、C
【解析】
根据加权平均数的计算公式计算可得.
【详解】
解:该校篮球队队员的平均年龄为:(岁)
故答案为:C.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.
8、C
【解析】
试题分析:∵t=4时,y=20,
∴每分钟的进水量==5(升);
∴4到12分钟,8分钟的进水量=8×5=40(升),
而容器内的水量只多了30升-20升=10升,
∴8分钟的出水量=40升-10升=30升,
∴每分钟的进水量==3.75(升).
故选C.
考点:一次函数的应用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、<
【解析】
利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.
【详解】
解:由折线统计图得乙运动员的成绩波动较大,
所以.
故答案为:<
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.
10、1
【解析】
观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知,设大正方形的边长为c,大正方形的面积为13,即:,再利用勾股定理得可以得出直角三角形的面积,进而求出答案.
【详解】
解:如图所示:∵,∴,
∵,,∴,
∴小正方体的面积=大正方形的面积-4个直角三角形的面积
=,故答案为:1.
此题主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.
11、
【解析】
直接利用平方差公式分解因式得出即可.
【详解】
,
,
.
故答案为:.
此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.
12、24
【解析】
设其余两边长分别为、,根据勾股定理列出方程,解方程求出,计算即可.
【详解】
设其余两边长分别为、,
由勾股定理得,,
整理得,,
解得,(舍去),,
则其余两边长分别为、,
则这个三角形的周长.
故答案为:.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是、,斜边长为,那么.
13、 (-1,1).
【解析】
解:过点A作AC⊥x轴于点C,过点A′作A′D⊥x轴,
因为ΔOAB是等腰直角三角形,所以有OC=BC=AC=1,
∠AOB=∠AOB′=45°,
则点A的坐标是(1,1),
OA=,又∠A′OB′=45°,
所以∠A′OD=45°,OA′=,
在RtΔA′OD中,cs∠A′OD= ,
所以OD=1,A′D=1,所以点A′的坐标是(-1,1).
考点:1、旋转的性质;2、等腰三角形的性质.
三、解答题(本大题共5个小题,共48分)
14、 (1)钢索的长度为m;(2)菱形ABCD的周长=16.
【解析】
(1)直接利用勾股定理得出AC的长即可;
(2)由三角形的中位线,求出BD=4,根据∠A=60°,得△ABD为等边三角形,从而求出菱形ABCD的边长.
【详解】
(1)如图1所示,由题意可得:AB=2m,BC=5m,
则AC==(m),
答:钢索的长度为m;
(2)∵E、F分别是AB、AD的中点,
∴EF=BD,
∵EF=2,
∴BD=4,
∵∠A=60°,
∴△ABD为等边三角形,
∴AB=BD=4,
∴菱形ABCD的周长=4×4=16,
此题考查勾股定理的应用;三角形中位线定理;菱形的性质,解题关键在于求出AC的长
15、(1)k=;(2)解析式为y=2x﹣2.
【解析】
试题分析: (1)根据L1⊥L2,则k1·k2=﹣1,可得出k的值即可;
(2)根据直线互相垂直,则k1·k2=﹣1,可得出过点A直线的k等于2,得出所求的解析式即可.
试题解析:
解:(1)∵L1⊥L2,则k1•k2=﹣1,
∴2k=﹣1,
∴k=﹣;
(2)∵过点A直线与y=x+2垂直,
∴设过点A直线的直线解析式为y=2x+b,
把A(2,2)代入得,b=﹣2,
∴解析式为y=2x﹣2.
16、(1)50人;(2)0.2、10;(3)400人
【解析】
(1)由C选项的频数及其频率可得总人数;
(2)根据频率=频数÷总人数可分别求得m、n的值;
(3)用总人数乘以样本中C、D选项的频率和即可得.
【详解】
(1)被调查的总人数为5÷0.1=50人;
(2)m=10÷50=0.2、n=50×0.2=10;
(3)估计全校学生中利用手机购物或玩游戏的共有800×(0.1+0.4)=400人.
考查频数分布表,解题的关键是掌握频率=频数÷总人数及样本估计总体思想的运用.
17、(1)证明见详解;(2)45°;(3)BC+BE=2BG,理由见详解.
【解析】
(1)作FH⊥BC于H,由等腰三角形的性质得出∠ABD=∠CBD,BD⊥AC,由角平分线的性质得出EF=HF,∠BEF=90°=∠BHF,证明△BEF≌△BHF,得出BE=BH,证出△BCE是等腰直角三角形,得出∠BCE=45°,BE=EC=BH,证出△CFH是等腰直角三角形,得出CH=HF=EF,即可得出结论;
(2)由BD平分∠ABC,得到∠ABD的度数,然后求得∠BFE,由直角三角形斜边上的中线定理,可得DE=CD,可得∠DEF=∠DCF=22.5°,然后根据外角定理,即可求得∠BDE;
(3)由(2)知,∠ADE=∠ABC=45°,由等腰三角形的性质得出∠A=∠ACB=67.5°,由三角形内角和定理得出∠AED=180°-∠A-∠ADE=67.5°,得出∠AED=∠A,证出DA=DE,由等腰三角形的性质得出AG=EG,即可得出结论.
【详解】
(1)证明:作FH⊥BC于H,如图所示:
则∠BHF=90°,
∵AB=BC,BD是AC边上的高,
∴∠ABD=∠CBD,BD⊥AC,
∵CE是AB边上的高,
∴CE⊥AB,
∴EF=HF,∠BEF=90°=∠BHF,
在△BEF和△BHF中,
∴△BEF≌△BHF(AAS),
∴BE=BH,
∵∠ABC=45°,
∴△BCE是等腰直角三角形,
∴∠BCE=45°,BE=EC=BH,
∴△CFH是等腰直角三角形,
∴CH=HF=EF,
∴EC+EF=BH+CH=BC;
(2)解:如图,
由(1)知,BD平分∠ABC,∠ABC=45°,
∴∠ABF=22.5°,
∴∠BFE=90°-22.5°=67.5°,
∵AB=BC,∠ABC=45°,
∴∠A=,
在直角三角形ACE中,D是AC中点,
∴DE=CD=AD,
∴∠DEF=∠DCF=90°-67.5°=22.5°,
∴∠BDE=∠BFE-∠DEF=67.5°-22.5°=45°;
(3)解:BC+BE=2BG,理由如下:如图,
由(2)得:∠DEF=∠DCF=22.5°
∴∠ADE=∠ABC=45°,
∵AB=BC,∠ABC=45°,
∴∠A=∠ACB=67.5°,
∴∠AED=180°-∠A-∠ADE=67.5°,
∴∠AED=∠A,
∴DA=DE,
∵DG⊥AE,
∴AG=EG,
∵BC=AB=BE+AE=BE+2EG=BG+EG,EG=BG-BE,
∴BC=BG+BG-BE,
∴BC+BE=2BG.
本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质与判定、等腰直角三角形的判定与性质、角平分线的性质、直角三角形斜边上的中线等;本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等和等腰直角三角形是解题的关键.
18、证明见解析.
【解析】
由题意可证∠MON=90°=∠PMO,根据勾股定理列出方程求出x的值,可得PM=ON,OP=MN,即结论可证.
【详解】
在中,,
∴,
∴,
∴是直角三角形,
∴,
在中,,
由勾股定理可得,即,
解得,
∴,,
∴,
∴四边形是平行四边形.
本题考查了平行四边形的判定,勾股定理和勾股定理的逆定理,利用勾股定理的逆定理证明∠MON=90°是本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据勾股定理计算即可.
【详解】
解:由勾股定理得,弦=,
故答案为:.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
20、
【解析】
分析:先根据二次根式的乘法法则进行计算,然后化简后合并即可.
详解:
=
=
故答案为:.
点睛:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
21、﹣
【解析】
原式通分并利用同分母分式的减法法则计算即可得到结果
【详解】
原式=
=
=
故答案为:
此题考查分式的加减法,掌握运算法则是解题关键
22、
【解析】
证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.
【详解】
四边形ABCD为平行四边形,CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°
AC=CD=2,∠ACD=90°
△ACD为等腰直角三角形
∴BC=AD==.
故答案是:.
考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.
23、1
【解析】
根据方程常数项为0,求出m的值即可.
【详解】
解:方程整理得:(m+1)x2+5x+m2-3m-1=0,
由常数项为0,得到m2-3m-1=0,即(m-1)(m+1)=0,
解得:m=1或m=-1,
当m=-1时,方程为5x=0,不合题意,舍去,
则m的值为1.
故答案为:1.
本题考查了一元二次方程的一般形式,以及一元二次方程的定义,将方程化为一般形式是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、甲种图书的单价为每本45元,乙种图书的单价为每本90元
【解析】
设乙种图书的单价是每本x元,则甲种图书的单价是每本0.5x元,根据题意列出分式方程,解之经检验后即可得出结论.
【详解】
设乙种图书的单价是每本x元,则甲种图书的单价是每本0.5x元
根据题意得:
解得:x=90
经检验:x=90是分式方程的解
答:甲种图书的单价为每本45元,乙种图书的单价为每本90元.
本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.
25、 (1)AB=2;(1)证明见解析.
【解析】
(1)设BM=x,则CM=1x,BC=BA=3x;在Rt△ABM中,E为斜边AM中点,根据直角三角形斜边的中线等于斜边的一半可得AM=1BE=1.由勾股定理可得AM1=MB1+AB1,即可得30=x1+9x1,解得x=1.所以AB=3x=2;(1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.证明△ABF≌△ADH,根据全等三角形的性质可得AF=AH,BF=DH.再由Rt△FAH是等腰直角三角形,可得HF=AF.由HF=DH+DF=BF+DF,可得BF+DF=AF.
【详解】
解:(1)设BM=x,则CM=1x,BC=3x,
∵BA=BC,
∴BA=3x.
在Rt△ABM中,E为斜边AM中点,
∴AM=1BE=1.
由勾股定理可得AM1=MB1+AB1,
即30=x1+9x1,解得x=1.
∴AB=3x=2.
(1)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.
∵DF平分∠CDE,
∴∠1=∠1.
∵DE=DA,DP⊥AF
∴∠3=∠3.
∵∠1+∠1+∠3+∠3=90°,
∴∠1+∠3=35°.
∴∠DFP=90°﹣35°=35°.
∴AH=AF.
∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,
∴∠BAF=∠DAH.
又AB=AD,
∴△ABF≌△ADH(SAS).
∴AF=AH,BF=DH.
∵Rt△FAH是等腰直角三角形,
∴HF=AF.
∵HF=DH+DF=BF+DF,
∴BF+DF=AF.
本题是四边形的综合题,考查了正方形的性质、勾股定理、全等三角形的判定与性质及等腰直角三角形的性质等知识点,熟练运用相关知识是解决问题的关键.
26、(1)80分;(2)小王在期末应该至少考85分才能达到优秀.
【解析】
分析:(1)小张期末评价成绩=(小张完成作业分+小张的单元检测+小张期末考试分)÷3,
(2)先根据小张期末评价成绩及小张三项成绩求出期末考试成绩的权重.因为期末评价成绩至少80分才是优秀,所以根据题意依据小王的期末评价成绩80分来计算他的期末考试成绩即可.
详解:(1)小张的期末评价成绩==80,
答:小张的期末评价成绩是80分;
(2)依题意得,70×+90×+80×=81
解得:m=7,
经检查,m=7是所列方程的解.
设小王期末考试分数为x,依题意列方程得
60×+75×+x=80,
解得:x=84≈85,
答:小王在期末应该至少考85分才能达到优秀.
点睛:本题考查的知识点是平均数和加权平均数的计算,比较基础,注意计算准确.
题号
一
二
三
四
五
总分
得分
选项
频数
频率
A
10
B
0.2
C
5
0.1
D
0.4
E
5
0.1
完成作业
单元检测
期末考试
小张
70
90
80
小王
60
75
2024-2025学年福建省厦门市湖滨中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年福建省厦门市湖滨中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省福州市名校九上数学开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年福建省福州市名校九上数学开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省和县九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年安徽省和县九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。