2024-2025学年福建省漳州市九上数学开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式组的解集在数轴上可表示为( )
A.B.C.D.
2、(4分)电视塔越高,从塔顶发射出的电磁波传播得越远,从而能收看到电视节目的区域就越广.电视塔高(单位:)与电视节目信号的传播半径(单位:)之间存在近似关系,其中是地球半径.如果两个电视塔的高分别是,,那么它们的传播半径之比是,则式子化简为( )
A.B.C.D.
3、(4分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( ).
A.当AB=BC时,它是菱形
B.当AC=BD时,它是正方形
C.当∠ABC=90º时,它是矩形
D.当AC⊥BD时,它是菱形
4、(4分)如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )
A.林老师家距超市1.5千米
B.林老师在书店停留了30分钟
C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的
D.林老师从书店到家的平均速度是10千米/时
5、(4分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为( )
A.12B.15C.16D.18
6、(4分)下列几组数中,不能作为直角三角形三条边长的是( )
A.3,4,5B.5,12,13C.7,24,25D.9,39,40
7、(4分)下列式子从左边到右边的变形是因式分解的是( )
A.B.
C.D.
8、(4分)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只有0.0000007(毫米),数据0.0000007用科学记数法表示为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在函数中,自变量的取值范围是__________.
10、(4分)如图,小明从点出发,前进5 后向右转20°,再前进5 后又向右转20°,这样一直走下去,直到他第一次回到出发点为止,他所走的路径构成了一个多边形
(1)小明一共走了________米;
(2)这个多边形的内角和是_________度.
11、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确结论的序号是________________
12、(4分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg
13、(4分)将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为 .
三、解答题(本大题共5个小题,共48分)
14、(12分)某校为灾区开展了“献出我们的爱”赈灾捐款活动,九年级(1)班50名同学积极参加了这次赈灾捐款活动,因不慎,表中数据有一处被墨水污染,已无法看清,但已知全班平均每人捐款38元.
(1)根据以上信息可知,被污染处的数据为 .
(2)该班捐款金额的众数为 ,中位数为 .
(3)如果用九年级(1)班捐款情况作为一个样本,请估计全校2000人中捐款在40元以上(包括40元)的人数是多少?
15、(8分)在平面直角坐标系中,直线()与直线相交于点P(2,m),与x轴交于点A.
(1)求m的值;
(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.
16、(8分)某县为发展教育事业,加强对教育经费投入,2012年投入3000万元,2014年投入3630万元,
(1)求该县教育经费的年平均增长率;
(2)若增长率保持不变,预计2015年该县教育经费是多少.
17、(10分)解方程:
(1)=2+;
(2).
18、(10分)如图,直线y= x+b,分别交x轴,y轴于点A、C,点P是直线AC与双曲线y=在第一象限内的交点,过点P作PB⊥x轴于点B,若OB=2,PB=3.
(1)填空:k= ;
(2)求△ABC的面积;
(3)求在第一象限内,当x取何值时,一次函数的值小于反比例函数的值?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当x=1时,分式无意义;当x=2时,分式的值为0,则a+b=_____.
20、(4分)在正方形中,在上,,,是上的动点,则的最小值是_____________.
21、(4分)颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面_____包.
22、(4分)﹣﹣×+=.
23、(4分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在直角梯形ABCD中,AB∥DC,∠B=90°,AB=16,BC=12,CD=1.动点M从点C出发,沿射线CD方向以每秒2个单位长的速度运动;动点N从B出发,在线段BA上,以每秒1个单位长的速度向点A运动,点M、N分别从C、B同时出发,当点N运动到点A时,点M随之停止运动.设运动时间为t(秒).
(1)设△AMN的面积为S,求S与t之间的函数关系式,并确定t的取值范围;
(2)当t为何值时,以A、M、N三点为顶点的三角形是等腰三角形?
25、(10分)某校在一次广播操比赛中,甲、乙、丙各班得分如下表:
(1)根据三项得分的平均分,从高到低确定三个班级排名顺序.
(2)该校规定:服装统一、动作整齐、动作准确三项得分都不得低于80分,并按,,的比例计入总分根据规定,请你通过计算说明哪一组获得冠军.
26、(12分)先化简后求值:()÷,其中x=.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.
【详解】
解不等式组可求得:
不等式组的解集是,
故选D.
本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.
2、D
【解析】
乘以分母的有理化因式即可完成化简.
【详解】
解:.
故选D.
本题考查了二次根式的应用,了解二次根式的有理化因式是解答本题的关键,难度不大.
3、B
【解析】
分析:A、根据菱形的判定方法判断,B、根据正方形的判定方法判断,C、根据矩形的判定方法判断,D、根据菱形的判定方法判断.
详解:A、菱形的判定定理,“一组邻边相等的平行四边形是菱形”,故A项正确;
B、由正方形的判定定理,“对角线互相垂直且相等的平行四边形是正方形”可知,对角线仅相等的平行四边形是矩形,故B项错误;
C、矩形的判定定理,“一个角是直角的平行四边形是矩形”,故C项正确;
D、菱形的判定定理,“对角线互相垂直的平行四边形是菱形”,故D项正确。
故选B.
点睛:本题考查了矩形、菱形、正方形的判定方法,熟练掌握矩形、菱形、正方形的判定方法是解答本题的关键.
4、D
【解析】
分析:
根据图象中的数据信息进行分析判断即可.
详解:
A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;
B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;
C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;
D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.
故选D.
点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.
5、C
【解析】
根据已知及全等三角形的判定可得到△ABC≌△CDE,从而得到b的面积=a的面积+c的面积.
【详解】
如图:
∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°
∴∠ACB=∠DEC
∵∠ABC=∠CDE,AC=CE,
在△ABC和△CDE中,
∴△ABC≌△CDE(AAS),
∴BC=DE
∴根据勾股定理的几何意义,b的面积=a的面积+c的面积
∴b的面积=a的面积+c的面积=5+11=1.
故选:C
本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.
6、D
【解析】
由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方,即可解答.
【详解】
解:A、32+42=52,能构成直角三角形,不符合题意;
B、122+52=132,能构成直角三角形,不符合题意;
C、72+242=252,能构成直角三角形,不符合题意;
D、92+392≠402,不能构成直角三角形,符合题意;
故选:D.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
7、B
【解析】
根据将多项式化为几个整式的乘积形式即为因式分解进行判断即可.
【详解】
解:A.左边是单项式,不是因式分解,
B.左边是多项式,右边是最简的整式的积的形式,是因式分解;
C.右边不是积的形式,不是因式分解,故错误;
D、右边不是积的形式,不是因式分解,故错误;;
故选:B.
本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,本题属于基础题型.
8、C
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 1<1时,n为负数.
【详解】
0.000 000 1=1×10-1.
故选C.
此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≠2
【解析】
根据分式有意义的条件进行求解即可.
【详解】
由题意得,2x-4≠0,
解得:x≠2,
故答案为:x≠2.
本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
10、90 2880
【解析】
先根据题意判断该多边形的形状,再计算该多边形的边的总长和内角和即可.
【详解】
解:由题意知,该多边形为正多边形,
∵多边形的外角和恒为360°,
360÷20=18,
∴该正多边形为正18边形.
(1)小明一共走了:5×18=90(米);
故答案为90
(2)这个多边形的内角和为:(18-2)×180°
=2880°
故答案为2880
本题考查了正多边形的相关知识,掌握多边形的内角和定理是解决本题的关键.
11、①②④
【解析】
根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC-BE=CD-DF,
∴CE=CF,
∴①说法正确;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,
∴②说法正确;
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF,
∵∠CAF≠∠DAF,
∴DF≠FG,
∴BE+DF≠EF,
∴③说法错误;
∵EF=2,
∴CE=CF=,
设正方形的边长为a,
在Rt△ADF中,
AD2+DF2=AF2,即a2+(a-)2=4,
解得a=,
则a2=2+,
S正方形ABCD=2+,
④说法正确,
故答案为①②④.
本题考查正方形的性质,全等三角形的判定与性质,熟悉掌握是解题关键.
12、20
【解析】
设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg
13、 (-1,1).
【解析】
解:过点A作AC⊥x轴于点C,过点A′作A′D⊥x轴,
因为ΔOAB是等腰直角三角形,所以有OC=BC=AC=1,
∠AOB=∠AOB′=45°,
则点A的坐标是(1,1),
OA=,又∠A′OB′=45°,
所以∠A′OD=45°,OA′=,
在RtΔA′OD中,cs∠A′OD= ,
所以OD=1,A′D=1,所以点A′的坐标是(-1,1).
考点:1、旋转的性质;2、等腰三角形的性质.
三、解答题(本大题共5个小题,共48分)
14、(1)40;(2)50,40;(3)1200人
【解析】
(1)根据平均数的定义即可列式求解;
(2)根据表格即可求出众数、中位数;
(3)先求出捐款40元以上(包括40元)的人数占比,再乘以总人数即可求解.
【详解】
(1)设被污染处的数据钱数为x,
故
解得x=40;
(2)由表格得众数为50,第25,26位同学捐的钱数为40,故中位数为40;
(3)解:全校捐款40元以上(包括40元)的人数为(人)
此题主要考查统计调查的应用,解题的关键是熟知平均数、中位线、众数的定义.
15、(1)m=4;(2)
【解析】
(1)把点P(2,m)代入直线y=2x可求m的值;
(2)先求得PB=4,根据三角形面积公式可求AB=1,可得A1(5,0),A2(-1,0),再根据待定系数法可求k的值.
【详解】
(1)∵ 直线过点P(2,m),∴ m=4
(2)∵ P(2,4),∴ PB=4
又∵ △PAB的面积为6,
∴ AB=1.∴ A1(5,0),A2(-1,0)
当直线经过A1(5,0)和P(2,4)时,
可得k=
当直线经过A2(-1,0)和P(2,4)时,
可得k=.
综上所述,k=.
本题主要考查一次函数的交点问题,根据三角形面积间的关系得出点A的坐标及熟练掌握待定系数法求函数解析式是解题的关键.
16、(1)10%;(2)3993万元.
【解析】
(1)设平均增长率为x,因为2012年投入3000万元,所以2013年投入3000(1+x)万元,2014年投入万元,然后可得方程,解方程即可;(2)根据(1)中x的值代入3630(1+x)计算即可.
【详解】
解:(1)设平均增长率为x,根据题意得
,
,
,
,
所以(舍去),
(2)3630(1+10%)=3993(万元)
答:年平均增长率为10%,预计2015年教育经费投入为3993万元.
本题考查一元二次方程的应用,增长率问题.
17、(1)x=0;(1)x=1.
【解析】
(1)两边同时乘以x-1,化为整式方程,解整式方程后进行检验即可;
(1)两边同时乘以3(x-3),化为整式方程,解整式方程后进行验根即可得.
【详解】
(1)两边同时乘以x-1,得:
3x﹣5=1(x﹣1)﹣x﹣1,
解得:x=0,
检验:当x=0时,x-1≠0,
所以x=0是分式方程的解;
(1)两边同时乘以3(x-3),得
1x﹣1=11x﹣11+x﹣3,
解得:x=1,
检验:当x=1时,3(x-3)≠0,
所以x=1是分式方程的解.
本题考查了解分式方程,熟练掌握解分式方程的一般方法以及注意事项是解题的关键.解分式方程要进行验根.
18、(1)6;(1)6;(3)0<x<1
【解析】
(1)∵PB⊥x轴于点B,OB=1,PB=3,
∴P(1,3),
∵点P是直线AC与双曲线y=在第一象限内的交点,
∴k=1×3=6,
故答案为6;
(1)∵直线y=x+b经过点P(1,3),
∴×1+b=3,
∴b=1,
即y=x+1,
令x=0,解得y=1,即C(0,1);
令y=0,解得x=﹣4,即A(﹣4,0);
∴AB=6,CO=1,
∴S△ABC=×6×1=6;
(3)由图象及点P的横坐标为1,可知:
在第一象限内,一次函数的值小于反比例函数的值时,x的范围为0<x<1.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
先根据分式无意义的条件可求出的值,再根据分式值为0的条件可求出b的值,最后将求出的a,b代入计算即可.
【详解】
因为当时,分式无意义,
所以,
解得:,
因为当时,分式的值为零,
所以,
解得:,
所以
故答案为:3.
本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.
20、
【解析】
根据题意画出图形,连接AC、AE,由正方形的性质可知A、C关于直线BD对称,故AE的长即为PE+PC的最小值,再根据勾股定理求出AE的长即可.
【详解】
如图所示:连接AC、AE,
∵四边形ABCD是正方形,
∴A、C关于直线BD对称,
∴AE的长即为PE+PC的最小值,
∵BE=2,CE=1,
∴BC=AB=2+1=3,
在Rt△ABE中,
∵AE=,
∴PE与PC的和的最小值为.
故答案为:.
本题考查的是轴对称-最短路线问题及正方形的性质,熟知“两点之间,线段最短”是解决问题的关键.
21、1
【解析】
设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据总价=单价×数量结合总价不超过20元,即可得出关于x的一元一次不等式,解之取其中的最大整数是解题的关键.
【详解】
设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,
根据题意得:0.7x+0.5(35﹣x)≤20,
解得:x≤1.5,
∵x为整数,
∴x=1.
故答案为1.
本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.
22、3+.
【解析】
试题分析:先进行二次根式的乘法运算,然后把各二次根式化为最简二次根式即可.
解:原式=4﹣﹣+2
=3﹣+2
=3+.
故答案为3+.
23、甲
【解析】
由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,
则S2甲
二、解答题(本大题共3个小题,共30分)
24、(1);(2)t=3.5或t=
【解析】
(1)过点M作MH⊥AB,垂足为H,用含的代数式表示的长,再利用三角形面积公式即可得到答案.(2)先用含的代数式分别表示的长,进行分类讨论,利用腰相等建立方程求解.
【详解】
(1)如图,过点M作MH⊥AB,垂足为H,则四边形BCMH为矩形.
∴MH=BC=2.
∵AN=16-t,
∴;
(2)由(1)可知:BH=CM=2t,BN=t,.
以A、M、N三点为顶点的三角形是等腰三角形,可以分三种情况:
①若MN=AN.因为:
在Rt△MNH中,,所以:MN2=t2+22,
由MN2=AN2得t2+22=(16-t)2,
解得t=.
②若AM=AN.
在Rt△MNH中,AM2=(16-2t)2+22.
由AM2=AN2得:,
即3t2-32t+144=4.
由于△=,
∴3t2-32t+144=4无解,
∴.
③若MA=MN.
由MA2=MN2,得t2+22=(16-2t)2+22
整理,得3t2-64t+256=4.
解得,t2=16(舍去)
综合上面的讨论可知:当t=秒或t=秒时,以A、M、N三点为顶点的三角形是等腰三角形.
本题考察的是梯形通过作辅助线化成直角三角形的问题与等腰三角形存在性问题,掌握分类讨论是解题的关键.
25、(1)乙、甲、丙;(2)丙班级获得冠军.
【解析】
利用平均数的公式即可直接求解,即可判断;
利用加权平均数公式求解,即可判断.
【详解】
分、分、分,
所以从高到低确定三个班级排名顺序为:乙、甲、丙;
乙班的“动作整齐”分数低于80分,
乙班首先被淘汰,
而分、分,
丙班级获得冠军.
本题考查了算术平均数和加权平均数的计算.平均数等于所有数据的和除以数据的个数.
26、2
【解析】
首先对前两个式子进行同分,并对每个分式进行分解因式,乘以后面分式的倒数,并进行约分即可.
【详解】
解:当x=时,
∴原式=
=,
=2.
本题主要考查分式的四则运算,注意通分及约分正确即可,最终的式子保证最简形式.
题号
一
二
三
四
五
总分
得分
批阅人
捐款(元)
10
15
30
50
60
人数
3
6
11
11
13
6
班级
服装统一
动作整齐
动作准确
甲
80
84
88
乙
97
78
80
丙
86
80
83
2024-2025学年甘肃省静宁县数学九上开学统考试题【含答案】: 这是一份2024-2025学年甘肃省静宁县数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃泾川县数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年甘肃泾川县数学九上开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省永春县九上数学开学经典模拟试题【含答案】: 这是一份2024-2025学年福建省永春县九上数学开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。