2024-2025学年甘肃省临夏市第一中学九年级数学第一学期开学质量跟踪监视试题【含答案】
展开
这是一份2024-2025学年甘肃省临夏市第一中学九年级数学第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若n边形的内角和等于外角和的2倍,则边数n为( )
A.n=4B.n=5C.n=6D.n=7
2、(4分)平行四边形具有的特征是( )
A.四个角都是直角B.对角线相等
C.对角线互相平分D.四边相等
3、(4分)下列二次根式中,与是同类二次根式的是( )
A.B.C.D.
4、(4分)下列成语描述的事件为随机事件的是( )
A.守株待兔B.水中捞月C.瓮中捉鳖D.水涨船高
5、(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )
A.等边三角形B.等腰梯形C.正方形D.平行四边形
6、(4分)在下列各式中,(1),(2)x2y-3xy2,(3),(4),是分式的有( )
A.(1).(2)B.(1).(3)C.(1).(4)D.(3).(4)
7、(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A、B,把正方形沿箭头方向推,使点D落在y轴的正半轴上的点处,则点C的对应点的坐标为( )
A.B.C.D.
8、(4分)关于x的方程无解,则m的值为( )
A.﹣5 B.﹣8 C.﹣2 D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)把(a-2)根号外的因式移到根号内,其结果为____.
10、(4分)计算:__________.
11、(4分)菱形ABCD的周长为24,∠ABC=60°,以AB为腰在菱形外作底角为45°的等腰△ABE,连结AC,CE,则△ACE的面积为___________.
12、(4分)在平面直角坐标系中,一次函数的图象与轴的交点坐标为__________.
13、(4分)有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,点为平面直角坐标系的原点,点在轴的正半轴上,正方形的边长是3,点在上,且.将绕着点逆时针旋转得到.
(1)求证:;
(2)在轴上找一点,使得的值最小,求出点的坐标.
15、(8分)长方形放置在如图所示的平面直角坐标系中,点轴,轴,.
(1)分别写出点的坐标______;______;________.
(2)在轴上是否存在点,使三角形的面积为长方形ABCD面积的?若存在,请直接写出点的坐标;若不存在,请说明理由.
16、(8分)如图,在矩形中,于点, ,求的度数.
17、(10分)解方程:(1)2x22x50(2)4x(2x1)3(2x1)
18、(10分)如图,四边形在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数与的图象上,对角线于点,轴于点.
(1)若,试求的值;
(2)当,点是线段的中点时,试判断四边形的形状,并说明理由.
(3)直线与轴相交于点.当四边形为正方形时,请求出的长度.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)点A(a,﹣5)和(3,b)关于x轴对称,则ab=_____.
20、(4分)某射手在相同条件下进行射击训练,结果如下:
该射手击中靶心的概率的估计值是______(精确到0.01).
21、(4分)化简: 的结果是_____.
22、(4分)▱ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是_____cm.
23、(4分)如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.上述结论中始终正确的有______.(填序号)
二、解答题(本大题共3个小题,共30分)
24、(8分)在数学兴趣小组活动中,小明将边长为2的正方形与边长为的正方形按如图1方式放置,与在同一条直线上,与在同一条直线上.
(1)请你猜想与之间的数量与位置关系,并加以证明;
(2)在图2中,若将正方形绕点逆时针旋转,当点恰好落在线段上时,求出的长;
(3)在图3中,若将正方形绕点继续逆时针旋转,且线段与线段相交于点,写出与面积之和的最大值,并简要说明理由.
25、(10分)如图,矩形中,、的平分线、分别交边、于点、。求证;四边形是平行四边形。
26、(12分)甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.
根据以上信息,整理分析数据如下:
(1)写出表格中的a、b、c的值;
(2)已知乙队员射击成绩的方差为4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由题意得(n-2)×180=360×2,解得n=6,
故选C.
2、C
【解析】
根据平行四边形的性质进行选择.
【详解】
平行四边形对角线互相平分,对边平行且相等,对角相等.
故选C
本题考核知识点:平行四边形性质. 解题关键点:熟记平行四边形性质.
3、C
【解析】
判断是否为同类二次根式必须先化为最简二次根式,若化为最简二次根式后,被开方数相同则为同类二次根式.
【详解】
解:A、,与不是同类二次根式;
B、,与不是同类二次根式;
C、,与是同类二次根式;
D、,与不是同类二次根式;
故选C.
主要考查如何判断同类二次根式,需注意的是必需先化为最简二次根式再进行判断.
4、A
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A.守株待兔是随机事件,故A符合题意;
B.水中捞月是不可能事件,故B不符合题意;
C.瓮中捉鳖是必然事件,故C不符合题意;
D.水涨船高是必然事件,故D不符合题意;
故选:A.
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、C
【解析】
根据轴对称图形和中心对称图形的概念,即可求解.
【详解】
解:A、B都只是轴对称图形;
C、既是轴对称图形,又是中心对称图形;
D、只是中心对称图形.
故选:C.
掌握好中心对称图形与轴对称图形的概念是解题的关键.
6、B
【解析】
根据分式的定义看代数式中分母中含有字母的代数式为分式.
【详解】
x2y-3xy2和分母中不含有字母,为整式;和分母中含有字母为分式,故选B.
本题考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
7、A
【解析】
由已知条件得到AD′=AD=2,AO=1,AB=2,根据勾股定理得到,于是得到结论.
【详解】
解:∵AD′=AD=2,
,
∴,
∵C′D′=2,C′D′∥AB,
∴C′(2, ),
故选A.
本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.
8、A
【解析】
解:去分母得:3x﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣1=﹣2+2+m,解得:m=﹣1.故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-
【解析】
根据二次根式有意义的条件,可知2-a>0,解得a<2,即a-2<0,因此可知(a-2)根号外的因式移到根号内后可得(a-2)=.
故答案为-.
10、8
【解析】
利用平方差公式即可解答.
【详解】
解:原式=11-3
=8.
本题考查平方差公式,熟悉掌握是解题关键.
11、9或.
【解析】
分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.
【详解】
解:①如图1,延长EA交DC于点F,
∵菱形ABCD的周长为24,
∴AB=BC=6,
∵∠ABC=60°,
∴三角形ABC是等边三角形,
∴∠BAC=60°,
当EA⊥BA时,△ABE是等腰直角三角形,
∴AE=AB=AC=6,∠EAC=90°+60°=150°,
∴∠FAC=30°,
∵∠ACD=60°,
∴∠AFC=90°,
∴CF=AC=3,
则△ACE的面积为:AE×CF=×6×3=9;
②如图2,过点A作AF⊥EC于点F,
由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,
∵AB=BE=BC=6,
∴∠BEC=∠BCE=15°,
∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,
∴AF=AE,AF=CF=AC=,
∵AB=BE=6,
∴AE=,
∴EF=,
∴EC=EF+FC=
则△ACE的面积为:EC×AF=.
故答案为:9或.
本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.
12、
【解析】
把x=0代入函数解析式即可得解.
【详解】
解:把x=0代入一次函数y=kx+1得y=1,
所以图象与y轴的交点坐标是(0,1).
故答案为:(0,1).
本题考查了一次函数的图象与坐标轴的交点.
13、AB=2BC.
【解析】
过A作AE⊥BC于E、作AF⊥CD于F,
∵甲纸条的宽度是乙纸条宽的2倍,
∴AE=2AF,
∵纸条的两边互相平行,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AD=BC,
∵∠AEB=∠AFD=90°,
∴△ABE∽△ADF,
∴,即.
故答案为AB=2BC.
考点:相似三角形的判定与性质.
点评:本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)点坐标为
【解析】
(1)根据直角坐标系的特点证明=90°即可;
(2)作点关于轴对称点,连接交轴于点,即为所求,再根据待定系数法确定函数关系式求出直线EF的解析式,再求出P点.
【详解】
(1)∵是由旋转而来,
∴.
又0,
∴,
即.
(2)如图所示,作点关于轴对称点,连接交轴于点.
∵点和点关于轴成轴对称,
∴.
∴.
且,,三点在一条直线上的时候最小
即取得最小值.
∵,,
∴,,
设直线的表达式为.
,两点坐标代入得,
解得
将∴.
∵点为直线与轴的交点.
∴令,即
得
故点坐标为
此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.
15、(1);;(2)或.
【解析】
(1)由点A坐标及AB、AD长可写出B、C、D的坐标;
(2)设点P的坐标为(a,0),表示出三角形的面积和长方形ABCD面积,由两者间的数量关系可得a的值.
【详解】
解:(1)由长方形ABCD可知,B点可看做A点向右平移AB长个单位得到,故B点坐标为 ,C点可看做A点向下平移AD长个单位得到,故C点坐标为 ,D点可看做C点向左平移CD长个单位得到,故D点坐标为 .
(2)设点P的坐标为,则点P到直线AD的距离为,
所以
由题意得,解得或6
所以点P的坐标为或.
本题考查了平面直角坐标系,长方形中由已知点写其余点坐标时,可将其余点看做由已知点平移得到,正确根据点的坐标表示出图形的面积是解题的关键.
16、
【解析】
根据矩形的性质以及垂直的定义求出OA=OB,∠OAB=60°,∠EAB=30°,再求出∠OBA=∠OAB=60°,进而可得出答案.
【详解】
解:∵四边形ABCD是矩形,
∴∠DAB=90°,
∴∠DAE+∠BAE=90°
∵∠DAE=2∠BAE,
∴∠BAE=30°,∠DAE=60°,
∴AE⊥BD,
∴∠AEB=90°,
∴∠OBA=60°,
∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,
∴OA=OB,
∴∠OAB=∠OBA=60°,
∴∠EAC=60°-30°=30°,
故答案为:30°
本题考查了矩形的性质,等腰三角形的性质,三角形内角和定理的应用,解此题的关键是求出∠OAB和∠EAB的度数.
17、(1)x1=,2=;(2).
【解析】
(1)先求出b2﹣4ac的值,再代入公式求出即可;
(2)先去括号整理为一般形式,再利用因式分解法解方程即可得出两个一元一次方程,求出方程的解即可.
【详解】
(1)2x22x50.
∵a=2,b=2x,c=-5,
∴,
∴x=,
∴x1=,2=;
(2)4x(2x1)3(2x1),
,
,
(2x-1)(4x-3)=0,
.
此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.
18、(1)1;(2)(2)四边形ABCD为菱形,理由见解析;(3)
【解析】
(1)由点N的坐标及CN的长度可得出点C的坐标,再利用反比例函数图象上点的坐标特征可求出点n的值;
(2)利用反比例函数图象上点的坐标特征可得出点A,C的坐标,结合点P为线段AC的中点可得出点P的坐标,利用反比例函数图象上点的坐标特征可得出点B,D的坐标,结合点P的坐标可得出BP=DP,利用“对角线互相垂直平分的四边形为菱形”可证出四边形ABCD为菱形;
(3)利用正方形的性质可得出AC=BD且点P为线段AC及BD的中点,利用反比例函数图象上点的坐标特征可求出点A,C,B,D的坐标,结合AC=BD可得出关于n的方程,解之即可得出结论.
【详解】
(1)∵点N的坐标为(2,0),CN⊥x轴,且,
∴点C的坐标为(2,).
∵点C在反比例函数的图象上,
∴n=2×=1.
(2)四边形ABCD为菱形,理由如下:
当n=2时,.
当x=2时,,
∴点C的坐标为(2,1),点A的坐标为(2,4).
∵点P是线段AC的中点,
∴点P的坐标为(2,).
当y=时,,
解得:,
∴点B的坐标为,点D的坐标为,
∴,
∴BP=DP.
又∵AP=CP,AC⊥BD,
∴四边形ABCD为菱形.
(3)∵四边形ABCD为正方形,
∴AC=BD,且点P为线段AC及BD的中点.
当x=2时,y1=n,y2=2n,
∴点A的坐标为(2,2n),点C的坐标为(2,n),AC=n,
∴点P的坐标为.
同理,点B的坐标为,点D的坐标为,.
∵AC=BD,
∴,
∴,
∴点A的坐标为,点B的坐标为.
设直线AB的解析式为y=kx+b(k≠0),
将A,B代入y=kx+b,得:,
解得:,
∴直线AB的解析式为y=x+.
当x=0时,y=x+,
∴点E的坐标为(0,),
∴当四边形ABCD为正方形时,OE的长度为.
本题考查了反比例函数图象上点的坐标特征、菱形的判定以及正方形的性质,解题的关键是:(1)根据点C的坐标,利用反比例函数图象上点的坐标特征求出n值;(2)利用“对角线互相垂直平分的四边形为菱形”,证出四边形ABCD为菱形;(3)利用正方形的性质及反比例函数图象上点的坐标特征,找出关于n的方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
根据关于x轴对称的点的横坐标相同,纵坐标互为相反数可得a、b的值,继而可求得答案.
【详解】
∵点A(a,-5)和点B(3,b)关于x轴对称,
∴a=3,b=5,
∴ab=1,
故答案为:1.
本题考查了关于x轴对称的点的坐标特征,熟练掌握是解题的关键.
20、0.1.
【解析】
根据表格中实验的频率,然后根据频率即可估计概率.
【详解】
解:由击中靶心频率都在0.1上下波动,
∴该射手击中靶心的概率的估计值是0.1.
故答案为:0.1.
本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.
21、
【解析】
原式= ,故答案为.
22、1.
【解析】
首先根据平行四边形基本性质,AE⊥BD,∠EAD=60°,可得∠ADE=30°,然后再根据直角三角形的性质可得AD=2AE=4cm,再根据四边形ABCD是平行四边形可得AO=CO,BO=DO,BC=AD=4cm,进而求出BO+CO的长,然后可得△OBC的周长.
【详解】
∵AE⊥BD,∠EAD=60°,
∴∠ADE=30°,
∴AD=2AE=4cm,
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,BC=AD=4cm,
∵AC+BD=14cm,
∴BO+CO=7cm,
∴△OBC的周长为:7+4=1(cm),
故答案为1
本题考查平行四边形的基本性质,解题关键在于根据直角三角形的性质得出AD=2AE=4cm
23、①③④
【解析】
首先连接CF,由等腰直角三角形的性质可得:,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC.问题得解.
【详解】
解:连接CF,
∵AC=BC,∠ACB=90°,点F是AB中点,
∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正确;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正确;
∴S△DCF=S△BEF,
∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC.,故④正确.
若EF⊥BC时,则可得:四边形CDFE是矩形,
∵DF=EF,
∴四边形CDFE是正方形,故②错误.
∴结论中始终正确的有①③④.
故答案为:①③④.
此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.
二、解答题(本大题共3个小题,共30分)
24、(1),,其理由见解析;(2);(3)6
【解析】
(1)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应角相等得∠AGD=∠AEB,如图1所示,延长EB交DG于点H,利用等角的余角相等得到∠DHE=90°,利用垂直的定义即可得DG⊥BE;
(2)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应边相等得到DG=BE,如图2,连接交于,则=°=,在Rt△AMD中,求出AO的长,即为DO的长,根据勾股定理求出GO的长,进而确定出DG的长,即为BE的长;
(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,即当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,即当点H与点A重合时,△BDH的高最大,即可确定出面积的最大值.
【详解】
(1)
证明:,,其理由是:
在正方形和正方形中,
有,,,
∴≌,∴,,
∵,∴
延长交于,则,
∴.
(2)
解:在正方形和正方形中,
有,,,
∴
∴≌,∴
连接交于,则,
∴,,
∴
∴
(3)
与面积之和的最大值为6,其理由是:
对于,长一定,当到的长度最大时,的面积最大,由(1)(2))△GHE和△BHD面积之和的最大值为6,理由为:
对于△EGH,点H在以EG为直径的圆上,
∴当点H与点A重合时,△EGH的高最大;
对于△BDH,点H在以BD为直径的圆上,
∴当点H与点A重合时,△BDH的高最大,
则△GHE和△BHD面积之和的最大值为2+4=6.
本题为几何变换综合题,(1)一般要问两条线段的关系,得分两个方面讨论,一个是长度关系,一个是位置关系(不是平行就是垂直),一般证明长度相等只需要证明三角形全等即可;(2)(1)中已经证明的结论一般为(2)作铺垫,所以只需要求出BE即可求出DG,这里因为出现直角三角形,所求线段的长度,用到了勾股定理;(3)这里主要用到直径所对的圆周角等于90°即可得到H同时在以BD和GH为直径的弦上,此时H在A处时,高最大,为圆的半径.
25、见解析
【解析】
由矩形的性质可得AB∥CD,BC∥AD,由平行线的性质和角平分线的性质可得∠EBD=∠FDB,可证BE∥DF,且BC∥DE,可得四边形BEDF是平行四边形.
【详解】
解:∵四边形ABCD是矩形,
∴AB∥CD,BC∥AD,
∴∠ABD=∠BDC,
∵BE平分∠ABD,DF平分∠BDC,
∴∠EBD=∠ABD,∠FDB=∠BDC,
∴∠EBD=∠FDB,
∴BE∥DF,且BC∥DE,
∴四边形BEDF是平行四边形.
本题考查了矩形的性质,平行四边形的判定,角平分线的性质,熟练运用矩形的性质是本题的关键.
26、(1)a=7,b=7,c=8;(2)甲队员的射击成绩较稳定
【解析】
(1)利用加权平均数的计算公式、中位数、众数的概念解答;
(2)利用方差的计算公式求出S甲2,根据方差的性质判断即可.
【详解】
解:(1)a=(3+6+4+8+7+8+7+8+10+9)=7,b=7,c=8;
(2)S甲2=×[(5﹣7)2×1+(6﹣7)2×2+(7﹣7)2×4+(8﹣7)2×2+(9﹣7)2×1]=1.2,
则S甲2<S乙2,
∴甲队员的射击成绩较稳定.
故答案为(1)a=7,b=7,c=8;(2)甲队员的射击成绩较稳定.
本题考查的是加权平均数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.
题号
一
二
三
四
五
总分
得分
队员
平均/环
中位数/环
众数/环
甲
7
b
7
乙
a
7.5
c
相关试卷
这是一份2024-2025学年福建省厦门市湖滨中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省福州市三牧中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年——度河北省正定县数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。