2024-2025学年甘肃省武威市第九中学九年级数学第一学期开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于的理解错误的是( )
A.是实数B.是最简二次根式C.D.能与进行合并
2、(4分)如图,在平行四边形ABCD中,对角线相交于点O,AC=AB, E是AB边的中点,G、F为 BC上的点,连接OG和EF,若AB=13, BC=10,GF=5,则图中阴影部分的面积为( )
A.48B.36C.30D.24
3、(4分)下列命题中是真命题的是( )
A.若a>b,则3﹣a>3﹣b
B.如果ab=0,那么a=0,b=0
C.一组对边相等,另一组对边平行的四边形是平行四边形
D.有两个角为60°的三角形是等边三角形
4、(4分)将化简,正确的结果是( )
A.B.C.D.
5、(4分)在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是( )
A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°
6、(4分)下列计算中,正确的是( )
A.+=B.×=3
C.÷=3D.=﹣3
7、(4分)用配方法解方程时,配方结果正确的是( )
A.B.
C.D.
8、(4分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于( )
A.10B.9C.8D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系xOy中,函数y1的图象与直线y1=x+1交于点A(1,a).则:
(1)k的值为______;
(1)当x满足______时,y1>y1.
10、(4分)若等腰三角形的顶角与一个底角度数的比值等于,该等腰三角形的顶角为_________.
11、(4分)已知函数y=-x+m与y=mx-4的图象交点在y轴的负半轴上,那么,m的值为____.
12、(4分)在菱形ABCD中,,,则对角线AC的长为________.
13、(4分)已知m是方程x2﹣2018x+1=0的一个根,则代数式m2﹣2017m++3的值等于_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在Rt△ABC中,∠C=90°,AC=5,AB=13,求BC.
15、(8分)在平面直角坐标系xOy中,对于两点A,B,给出如下定义:以线段AB为边的正方形称为点A,B的“确定正方形”.如图为点A,B 的“确定正方形”的示意图.
(1)如果点M的坐标为(0,1),点N的坐标为(3,1),那么点M,N的“确定正方形”的面积为___________;
(2)已知点O的坐标为(0,0),点C为直线上一动点,当点O,C的“确定正方形”的面积最小,且最小面积为2时,求b的值.
(3)已知点E在以边长为2的正方形的边上,且该正方形的边与两坐标轴平行,对角线交点为P(m,0),点F在直线上,若要使所有点E,F的“确定正方形”的面积都不小于2,直接写出m的取值范围.
16、(8分)如图,四边形是菱形,,垂足分别为点.
求证:;
当菱形的对角线,BD=6时,求的长.
17、(10分)已知正方形的边长为4,、分别为直线、上两点.
(1)如图1,点在上,点在上,,求证:.
(2)如图2,点为延长线上一点,作交的延长线于,作于,求的长.
(3)如图3,点在的延长线上,,点在上,,直线交于,连接,设的面积为,直接写出与的函数关系式.
18、(10分)分解因式:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD的最小值等于______.
20、(4分)将一副三角尺如图所示叠放在一起,若AB=8cm,则阴影部分的面积是_____cm1.
21、(4分)已知关于x的方程m2x2+2(m﹣1)x+1=0有实数根,则满足条件的最大整数解m是______.
22、(4分)如图所示四个二次函数的图象中,分别对应的是①y=ax1;②y=bx1;③y=cx1;④y=dx1.则a、b、c、d的大小关系为_____.
23、(4分)若a、b,c为三角形的三边,则________。
二、解答题(本大题共3个小题,共30分)
24、(8分)定义:我们把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:
①如图1,垂美四边形ABCD两组对边AB、CD与BC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.
②如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
(3)问题解决:
如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG,GE,已知AC=2,AB=1.求GE的长度.
25、(10分)某厂为支援灾区人民,要在规定时间内加工1500顶帐篷.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,结果提前4天完成任务,求该厂原来每天加工多少顶帐篷?
26、(12分)用适当的方法解一元二次方程:x2+4x+3=1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据根的性质对选项进行判断即可
【详解】
A. 是实数,故本选项正确
B. 是最简二次根式,故本选项正确
C. ,故本选项正确
D. 与=不是同类二次根式,不能合并,故本选项错误
故选D.
本题考查根的性质,熟练掌握二次根的性质是解题关键
2、C
【解析】
连接EO,设EF,GO交于点H,过点H作NM⊥BC与M,交EO于N,过点A作AP⊥BC,将阴影部分分割为△AEO,△EHO,△GHF,分别求三个三角形的面积再相加即可.
【详解】
解:如图连接EO,设EF,GO交于点H,过点H作NM⊥BC与M,交EO于N,
∵四边形ABCD为平行四边形,O为对角线交点,
∴O为AC中点,
又∵E为AB中点,
∴EO为三角形ABC的中位线,
∴EO∥BC,
∴MN⊥EO且MN=
即EO=5,
∵AC=AB,
∴BP=PCBC=5,
在Rt△APB中,,
∴三角形AEO的以EO为底的高为AP=6,MN==6
∴,,
∴,
故选:C
本题考查了平行四边形的性质、三角形与四边形的面积关系;熟练掌握平行四边形的性质是解决问题的关键.
3、D
【解析】
分别判断各选项是否正确即可解答.
【详解】
解:A. 若a>b,则3﹣a<3﹣b,故A错误;
B. 如果ab=0,那么a=0或b=0,故B错误;
C. 一组对边相等,另一组对边平行的四边形不一定是平行四边形,故C错误;
D. 有两个角为60°的三角形是等边三角形,故D正确;
故选D.
本题考查了不等式的性质、平行四边形的判定、三角形的判定等知识,熟练掌握是解题的关键.
4、C
【解析】
根据实数的性质即可求解.
【详解】
=
故选C.
此题主要考查实数的化简,解题的关键是熟知实数的性质.
5、D
【解析】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=60°.故A正确;
∵AD∥BC,∴∠A+∠B=180°,∴∠A=180°-∠B=120°,故B正确;
∵AD∥BC,∴∠C+∠D=180°,故C正确;
∵四边形ABCD是平行四边形,∴∠C=∠A=120°,故D不正确,
故选D.
6、C
【解析】
根据二次根式的性质和乘除法运算法则,对每个选项进行判断,即可得到答案.
【详解】
解:A、与不是同类二次根式,不能合并,故A错误;
B、,故B错误;
C、,故C正确;
D、,故D错误;
故选择:C.
本题考查了二次根式的性质,二次根式的乘除运算,以及同类二次根式的定义,解题的关键是熟练掌握二次根式的性质,以及熟记乘除法运算的运算法则.
7、A
【解析】
利用配方法把方程变形即可.
【详解】
用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,
故选A.
本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.
8、B
【解析】
作EF⊥BC于F,根据角平分线的性质可知EF=DE=3,即可求出△BCE的面积.
【详解】
作EF⊥BC于F,
∵BE平分∠ABC,ED⊥AB,EF⊥BC,
∴EF=DE=3,
∴△BCE的面积=×BC×EF=9,
故选B.
本题考查了角平分线的性质,熟练掌握角平分线的性质:角平分线上的点到角两边的距离相等是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2; x<﹣2或0<x<2.
【解析】
(2)将A点坐标分别代入两个解析式,可求k;
(2)由两个解析式组成方程组,求出交点,通过图象可得解.
【详解】
(2)∵函数y2的图象与直线y2=x+2交于点A(2,a),
∴a=2+2=2,
∴A(2,2),
∴2,
∴k=2,
故答案为:2;
(2)∵函数y2的图象与直线y2=x+2相交,
∴x+2,
∴x2=2,x2=﹣2,
∵y2>y2,∴x<﹣2或0<x<2,
故答案为:x<﹣2或0<x<2.
本题考查了反比例函数与一次函数的交点问题,待定系数法,关键是熟练利用图象表达意义解决问题.
10、360
【解析】
根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.
【详解】
∵△ABC中,AB=AC,
∴∠B=∠C,
∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k= ,
∴∠A:∠B=1:2,
即5∠A=180°,
∴∠A=36°,
故答案为:36°
此题考查等腰三角形的性质,三角形内角和定理,解题关键在于得到5∠A=180°
11、-1
【解析】
根据题意,第二个函数图象与y轴的交点坐标也是第一个函数图象与y轴的交点坐标,然后求出第二个函数图象与y轴的交点坐标,代入第一个函数解析式计算即可求解.
【详解】
当x=0时,y=m•0-1=-1,
∴两函数图象与y轴的交点坐标为(0,-1),
把点(0,-1)代入第一个函数解析式得,m=-1.
故答案为:-1.
此题考查两直线相交的问题,根据第二个函数解析式求出交点坐标是解题的关键,也是本题的突破口.
12、1
【解析】
由菱形的性质可得AB=BC=1,∠DAB+∠ABC=180°,可得∠ABC=10°,可证△ABC是等边三角形,可得AC=1.
【详解】
如图,
∵四边形ABCD是菱形
∴AB=BC=1,∠DAB+∠ABC=180°
∴∠ABC=10°,且AB=BC
∴△ABC是等边三角形
∴AC=AB=1
故答案为:1
本题考查了菱形的性质,等边三角形的判定和性质,熟练运用菱形的性质是本题的关键.
13、1
【解析】
利用m是方程x2﹣2018x+1=0的一个根得到m2=2018m﹣1,m2+1=2018m,利用整体代入的方法得到原式=m++2,然后通分后再利用整体代入的方法计算.
【详解】
解:∵m是方程x2﹣2018x+1=0的一个根,
∴m2﹣2018m+1=0,
∴m2=2018m﹣1,m2+1=2018m,
∴m2﹣2017m++3=2018m﹣1﹣2017m++3
=m++2
=+2
=+2
=2018+2
=1.
故答案为:1.
本题考查一元二次方程的解得定义,代数式求值,分式的加减.掌握整体思想,整体代入是解题关键.
三、解答题(本大题共5个小题,共48分)
14、12
【解析】
在Rt△ABC中,∠C=90°,AC=5,AB=13,根据勾股定理,即可求出BC.
【详解】
解:∵在Rt△ABC中,∠C=90°,
∴
∴
∴
又∵AC=5,AB=13,
∴
=
=12
此题主要考查勾股定理的运用.
15、(1)9;(2)OC⊥直线于点C;① ;② ;(3)
【解析】
(1)求出线段MN的长度,根据正方形的面积公式即可求出答案;
(2)根据面积求出,根据面积最小确定OC⊥直线于点C,再分情况分别求出b;
(3)分两种情况:当点E在直线y=-x-2是上方和下方时,分别求出点P的坐标,由此得到答案.
【详解】
解:(1)∵M(0,1),N(3,1),
∴MN∥x轴,MN=3,
∴点M,N的“确定正方形”的面积为,
故答案为:9;
(2)∵点O,C的“确定正方形”面积为2,
∴.
∵点O,C的“确定正方形”面积最小,
∴OC⊥直线于点C.
① 当b>0时,如图可知OM=ON,△MON为等腰直角三角形,
可求,
∴
② 当时,同理可求
∴
(3)如图2中,当正方形ABCD在直线y=-x-2的下方时,延长DB交直线y=-x-2于H,
∴BH⊥直线y=-x-2,
当BH=时,点E、F的“确定正方形”的面积的最小值是2,此时P(-6,0);
如图3中,当正方形ABCD在直线y=-x-2的上方时,延长DB交直线y=-x-2于H,
∴BH⊥直线y=-x-2,
当BH=时,点E、F的“确定正方形”的面积的最小值是2,此时P(2,0),
观察图象可知:当或时,所有点E、F的“确定正方形”的面积都不小于2
此题是一次函数的综合题,考查一次函数的性质,正方形的性质,正确理解题中的正方形的特点画出图象求解是解题的关键.
16、(1)见解析;(2).
【解析】
(1)根据菱形的邻边相等,对角相等,证明△ABE与△CBF全等,再根据全等三角形对应边相等即可证明;
(2)先根据菱形的对角线互相垂直平分,求出菱形的边长,再根据菱形的面积等于对角线乘积的一半和底边乘以高两种求法即可求出.
【详解】
(1)证明:四边形是菱形,
,
又,
∴△ABE≌△CBF(AAS)
(2)解:四边形是菱形,
,,,,
,
,
,
.
故答案为:(1)见解析;(2).
本题考查了全等三角形的性质和判定,菱形的性质和面积,注意:菱形的四条边都相等,菱形的对角相等.
17、(1)详见解析;(2)4;(3)
【解析】
(1)先证出,得到,则有;
(2)延长交的延长线于,先证出,得到,再由直角三角形的性质得到;
(3)过作交于,交于,先证得得到,再进一步得到及,所以,,所以.
【详解】
(1)证明:∵四边形是正方形,
∴,,
∴,
∵,
∴,
∴,
∴,
∴.
(2)解:延长交的延长线于,
∵四边形是正方形,
∴,,
∵,
∴,,
∴,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∵,
∴.
(3).
证明:过作交于,交于,
则,易得
∴,
∴,
由此可证平分,
∴,
∴,
∴,
∴为等腰直角三角形,
∴,
∴,
∴,
∴.
本题考查了正方形的综合,熟练掌握正方形和三角形全等的判定与性质,添加恰当的辅助线是解题关键.
18、.
【解析】
先提公因式2,再用完全平方公式进行分解即可。
【详解】
解:
.
本题考查了综合提公因式法和公式法进行因式分解,因式分解时要先提公因式再用公式分解。
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
过点P作PE⊥AD交AD的延长线于点E,根据四边形ABCD是平行四边形,得到 AB∥CD,推出PE=PD,由此得到当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=AB=3,得到2PB+ PD的最小值等于6.
【详解】
过点P作PE⊥AD交AD的延长线于点E,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EDC=∠DAB=30°,
∴PE=PD,
∵2PB+ PD=2(PB+PD)=2(PB+PE),
∴当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,
∵∠DAB=30°,∠AEP=90°,AB=6,
∴PB+PE的最小值=AB=3,
∴2PB+ PD的最小值等于6,
故答案为:6.
此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD转化为三点共线的形式是解题的关键.
20、2
【解析】
根据含30度角的直角三角形的性质求出AC的长,然后证明∠AFC=45°,得到CF的长,再利用三角形面积公式计算即可.
【详解】
解:∵∠B=30°,∠ACB=90°,∠E=90°,AB=2cm,
∴AC=4cm,BC∥ED,
∴∠AFC=∠D=45°,
∴AC=CF=4cm,
∴阴影部分的面积=×4×4=2(cm1),
故答案为:2.
本题考查了含30度角的直角三角形的性质,求出AC=CF=4cm是解答此题的关键.
21、1
【解析】
分m=1即m≠1两种情况考虑,当m=1时可求出方程的解,从而得出m=1符合题意;当m≠1时,由方程有实数根,利用根的判别式即可得出△=-8m+4≥1,解之即可得出m的取值范围.综上即可得出m的取值范围,取其内最大的整数即可.
【详解】
解:当m=1时,原方程为2x+1=1,
解得:x=﹣,
∴m=1符合题意;
当m≠1时,∵关于x的方程m2x2+2(m﹣1)x+1=1有实数根,
∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥1,
解得:m≤且m≠1.
综上所述:m≤.
故答案为:1.
本题考查的是方程的实数根,熟练掌握根的判别式是解题的关键.
22、a>b>d>c
【解析】
设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小.
【详解】
因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),
所以,a>b>d>c.
本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小.
23、2a
【解析】
根据三角形三条边的长度关系,可以得到两个括号内的正负情况;再根据一个数先平方,后开方,所得的结果是这个数的绝对值,来计算这个式子.
【详解】
∵a,b,c是三角形的三边,
三角形任意两边之和大于第三边,任意两条边之差小于第三边,
∴a+b-c>0,b-c-a<0,
所以==.
本题主要考查了三角形三边的边长关系:三角形任意两条边之和大于第三边,任意两条边之差小于第三边.解决本题,还需要清楚地明白一个数先平方后开方,所得的就是这个数的绝对值.
二、解答题(本大题共3个小题,共30分)
24、(1)四边形ABCD是垂美四边形,证明见解析 (2)①,证明见解析;②四边形FMAN是矩形,证明见解析 (3)
【解析】
(1)根据垂直平分线的判定定理证明即可;
(2)①根据垂直的定义和勾股定理解答即可;②根据在Rt△ABC中,点F为斜边BC的中点,可得,再根据△ABD和△ACE是等腰三角形,可得,再由(1)可得,,从而判定四边形FMAN是矩形;
(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.
【详解】
(1)四边形ABCD是垂美四边形
连接AC、BD
∵
∴点A在线段BD的垂直平分线上
∵
∴点C在线段BD的垂直平分线上
∴直线AC是线段BD的垂直平分线
∴
∴四边形ABCD是垂美四边形;
(2)①,理由如下
如图,已知四边形ABCD中,,垂足为E
由勾股定理得
②四边形FMAN是矩形,理由如下
如图,连接AF
∵在Rt△ABC中,点F为斜边BC的中点
∵△ABD和△ACE是等腰三角形
由(1)可得,
∵
∴四边形FMAN是矩形;
(3)连接CG、BE,
,即
在△AGB和△ACE中
∵
,即
∴四边形CGEB是垂美四边形
由(2)得
.
本题考查了垂美四边形的问题,掌握垂直平分线的判定定理、垂直的定义、勾股定理、垂美四边形的性质、全等三角形的性质以及判定定理是解题的关键.
25、原来每天加工100顶帐篷.
【解析】
试题分析:
设该厂原来每天加工x顶帐篷,由题中所给数量关系可得方程,解此方程并检验即可求得所求答案.
试题解析:
设该厂原来每天加工x顶帐篷,由题意可得:
,
解得,
经检验,是所列方程的解,
答:原来每天加工100顶帐篷.
26、x2=-3,x2=-2
【解析】
利用因式分解法解方程.
【详解】
解:(x+3)(x+2)=2,
x+3=2或x+2=2,
所以x2=-3,x2=-2.
本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年甘肃省武威市武威第八中学九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年甘肃省武威市武威第八中学九年级数学第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省武威市民勤实验中学九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年甘肃省武威市民勤实验中学九上数学开学学业水平测试模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省武威市凉州区洪祥中学九年级数学第一学期开学检测试题【含答案】: 这是一份2024-2025学年甘肃省武威市凉州区洪祥中学九年级数学第一学期开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。