2024-2025学年甘肃省武威市武威第八中学九年级数学第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某学校五个绿化小组一天植树的棵数如下:,,,,,如果这组数据的平均数与众数相等,那么这组数据的中位数是( )
A.B.C.D.
2、(4分)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为( )
A.3.5,3B.3,4C.3,3.5D.4,3
3、(4分)如果,则a的取值范围是( )
A. B. C. D.
4、(4分)若,则的值是
A.B.C.D.
5、(4分)如图,正方形纸片ABCD的边长为4 cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是( )
\
A.2 cmB.4 cmC. cmD.1 cm
6、(4分)下列各组数中,以它们为边长的线段不能构成直角三角形的是( )
A.1,,2B.1,2,
C.5,12,13D.1,,
7、(4分)下列各式中,不是最简二次根式的是( )
A.B.C.D.
8、(4分)某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是( )
A.4,5B.4.5,6C.5,6D.5.5,6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是_____.
10、(4分)如图,函数和的图象相交于点A(,3),则不等式的解集为___________.
11、(4分)反比例函数,在同一直角坐标系中的图象如图所示,则的面积为_____.(用含有、代数式表示)
12、(4分)如图,四边形纸片ABCD中,,.若,则该纸片的面积为________ .
13、(4分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是 分.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.
15、(8分)如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60.
(1)求证:ABAC;
(2)若DC=2,求梯形ABCD的面积.
16、(8分)2019年4月23日是第24个世界读书日.为迎接第24个世界读书日的到来,某校举办读书分享大赛活动:现有甲、乙两位同学的各项成绩如下表所示:若“推荐语”“读书心得”“读书讲座”的成绩按确定综合成绩,则甲、乙二人谁能获胜?请通过计算说明理由
17、(10分)某服装店进货一批甲、乙两种款型的时尚T恤衫,甲种款型共花了 10400 元,乙种款型共花了6400元,甲种款型的进货件数是乙种款型进货件数的2倍,甲种款型每件的进货价比乙种款型每件的进货价少30元.商店将这两种T恤衫分别按进货价提高60%后进行标价销售,销售一段时间后,甲种款型全部售完,乙种款型剩余一半.商店对剩下的乙种款型T恤衫按标价的五折进行降价销售,很快全部售完.
(1)甲、乙两种款型的T恤衫各进货多少件?
(2)求该商店售完这批T恤衫共获利多少元?(获利=销售收入-进货成本)
18、(10分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠F=60°,,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在一次函数y=kx+b(k≠0)中,函数y与自变量x的部分对应值如表:
则m的值为_____.
20、(4分)某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_______元.
21、(4分)=_____.
22、(4分)因式分解:_________.
23、(4分)如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF
(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
25、(10分)如图,在平行四边形ABCD中,AC,BD相交于点O,点E,F在AC上,且OE=OF.
(1)求证:BE=DF;
(2)当线段OE=_____时,四边形BEDF为矩形,并说明理由.
26、(12分)如图,已知AD=BC,AC=BD.
(1)求证:△ADB≌△BCA;
(2)OA与OB相等吗?若相等,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:根据数据的特点可知众数为10,因此可得,解得x=10,因此这五个数可按从小到大排列为8、10、10、10、12,因此中位数为10.
故选C
考点:众数,中位数,平均数
2、A
【解析】
根据题意可知x=2,然后根据平均数、中位数的定义求解即可.
【详解】
∵这组数据的众数是2,
∴x=2,
将数据从小到大排列为:2,2,2,4,4,7,
则平均数=(2+2+2+4+4+7)÷6=1.5
中位数为:(2+4)÷2=1.
故选A
本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键.
3、B
【解析】
试题分析:根据二次根式的性质1可知:,即故答案为B..
考点:二次根式的性质.
4、C
【解析】
∵,
∴b=a,c=2a,
则原式.
故选C.
5、A
【解析】
如图,取AB,CD的中点K,G,连接KG,BD交于点O,由题意知,点Q运动的路线是线段OG,因为DO=OB,所以DG=GC,所以OG=BC=×4=2,所以点Q移动路线的最大值是2,故选A.
6、D
【解析】
试题分析:A、∵12+()2=22,∴能组成直角三角形;
B、∵12+22=()2,∴能组成直角三角形;
C、∵52+122=132,∴能组成直角三角形;
D、∵12+()2≠()2,∴不能组成直角三角形.
故选D.
考点:勾股定理的逆定理.
7、D
【解析】
根据最简二次根式的条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.
【详解】
解:A、是最简二次根式,不符合题意;
B、是最简二次根式,不符合题意;
C、是最简二次根式,不符合题意;
D、不是最简二次根式,符合题意;
故选:D.
此题主要考查了最简二次根式,关键是掌握最简二次根式的条件.
8、D
【解析】
先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.
【详解】
解:根据题意知6月份的用水量为5×6-(3+6+4+5+6)=6(t),
∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,
则该户今年1至6月份用水量的中位数为=5.5、众数为6,
故选D.
本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
把此正方体的一面展开,然后在平面内,利用勾股定理求点A和点B间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.
【详解】
解:∵展开后由勾股定理得:AB2=12+(1+1)2=5,
∴AB=.
故答案为
本题考查了平面展开﹣最短路径问题,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.
10、x≥1.5
【解析】
试题分析:首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.
解:∵函数y=2x过点A(m,3),
∴2m=3,
解得:m=,
∴A(,3),
∴不等式2x>ax+4的解集为x>.
故答案为x>.
考点:一次函数与一元一次不等式.
11、
【解析】
【分析】设A(m,n),则有mn=k1,再根据矩形的性质可求得点N(,n),点M(m,),继而可得AN=m-,AM=n-,再根据三角形面积公式即可得答案.
【详解】如图,设A(m,n),则有mn=k1,
由图可知点N坐标为(,n),点M(m,),
∴AN=m-,AM=n-,
∴S△AMN=AM•AN=
===,
故答案为.
【点睛】本题考查了反比例函数图象上的点的坐标特征、三角形面积的计算,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.
12、16
【解析】
本题可通过作辅助线进行解决,延长AB到E,使BE=DA,连接CE,AC,先证两个三角形全等,利用直角三角形的面积与四边形的面积相等进行列式求解.
【详解】
解:如图,延长AB到E,使BE=DA,连接CE,AC,
∵∠CBE=∠BCA+∠CAB,
∠ADC=180°-∠DCA-∠DAC,
∵∠BCD=90°,∠BAD=90°,
∴∠BCA+∠CAB=90°+90°-∠DCA-∠DAC=180°-∠DCA-∠DAC,
∴∠CBE=∠ADC,
又∵BE=DA,CB=CD,
∴△CBE≌△CDA,
∴CE=CA,∠ECB=∠DCA,
∴∠ECA=90°,
∴三角形ACE是等腰直角三角形。
∵AE=AB+BE=AB+AD=8cm
∴S四边形ABCD=S△AEC=16
故答案为:16
本题考查了面积及等积变换问题;巧妙地作出辅助线,把四边形的问题转化为等腰直角三角形来解决是正确解答本题的关键.
13、1
【解析】
利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.
【详解】
小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG≌△CFH,得出对应边相等即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,
∵E、F分别为AD、BC边的中点,
∴AE=DE=AD,CF=BF=BC,
∴DE∥BF,DE=BF,
∴四边形BFDE是平行四边形,
∴BE∥DF,∴∠AEG=∠ADF,
∴∠AEG=∠CFH,
在△AEG和△CFH中,
∵∠EAG=∠FCH,AE=CF,∠AEG=∠CFH,
∴△AEG≌△CFH(ASA),
∴AG=CH.
15、(1)见解析;(2)
【解析】
(1)利用等腰梯形的性质可求得,再利用平行的性质及等边对等角可求出,然后根据三角形内角和即可求出,从而得到结论;
(2)过点作于点,利用含30°角的直角三角形的性质可求出BE、BC,根据勾股定理求出AE,然后利用面积公式进行计算即可.
【详解】
证明:(1)∵,,,
∴,,
又∵,
∴,
∴,
∴,
∴;
(2)过点作于,
∵,
∴,
又∵,
∴,
∴在中,,
∵,,
∴,
∴.
本题考查了等腰梯形的性质,含30°角的直角三角形的性质,等边对等角及勾股定理,需要熟记基础的性质定理,熟练应用.
16、甲获胜;理由见解析.
【解析】
根据加权平均数的计算公式列出算式,进行计算即可.
【详解】
甲获胜;
甲的加权平均成绩为(分,
乙的加权平均成绩为(分,
∵,
∴甲获胜.
此题考查了加权平均数的概念及应用,用到的知识点是加权平均数的计算公式,解题的关键是根据公式列出算式.
17、(1)甲种款型的T恤衫购进1件,乙种款型的T恤衫购进40件;(2)7520元.
【解析】
(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进2x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;
(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.
【详解】
解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进2x件,
依题意得: ,
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
2x=1.
答:甲种款型的T恤衫购进1件,乙种款型的T恤衫购进40件;
(2)甲进货价:10400÷1=130(元/件),乙进货价:6400÷40=160(元/件),
130×(1+60%)×1+160×(1+60%)×(40÷2)+160×(1+60%)×0.5×(40÷2)-10400-6400
=7520(元)
答:售完这批T恤衫商店共获利7520元.
本题考查列分式方程解实际问题,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
18、(1)证明见解析(2)3
【解析】
试题分析:(1)已知四边形ABCD为平行四边形,根据平行四边形的性质可得AB=CD,AD∥BC,所以∠F=∠1.再由AF平分∠BAD,可得∠2=∠1.所以∠F=∠2,根据等腰三角形的判定可得AB=BF,即可得BF=CD;(2)先判定△BEF为Rt△,在Rt△BEF即可求解.
试题解析:
(1)证明:∵ 四边形ABCD为平行四边形,
∴ AB=CD,AD∥BC.
∴∠F=∠1.
又∵ AF平分∠BAD,
∴∠2=∠1.
∴∠F=∠2.
∴AB=BF.
∴BF=CD.
(2)解:∵AB=BF,∠F=60°,
∴△ABF为等边三角形.
∵BE⊥AF,∠F=60°,
∴∠BEF=90°,∠3=30°.
在Rt△BEF中,设,则,
∴.
∴.
∴AB=BF=3.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-2
【解析】
把两组坐标代入解析式,即可求解.
【详解】
解:将(﹣1,7)、(0,1)代入y=kx+b,
得:,解得:,
∴一次函数的解析式为y=﹣5x+1.
当x=1时,m=﹣5×1+1=﹣2.
故答案为:﹣2.
此题主要考查一次函数的解析式,解题的关键是熟知待定系数法确定函数关系式.
20、13
【解析】
试题解析:
故答案为
点睛:题目主要考查加权平均数.分别用单价乘以相应的百分比然后相加,计算即可得解.
21、1
【解析】
利用二次根式乘除法法则进行计算即可.
【详解】
=
=
=1,
故答案为1.
本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.
22、
【解析】
直接提取公因式即可.
【详解】
.
故答案为:.
本题考查了因式分解——提取公因式法,掌握知识点是解题关键.
23、y=2x-3.
【解析】
根据题意可得点B的坐标为(0,-1),AE=2,根据EF平分矩形ABCD的面积,先求出点F的坐标,再利用待定系数法求函数解析式即可.
【详解】
∵AB=2,点A的坐标为(0,1),
∴OB=1,∴点B坐标为(0,-1),
∵点E(2,1),
∴AE=2,ED=AD-AE=1,
∵EF平分矩形ABCD的面积,
∴BF=DE,
∴点F的坐标为(1,-1),
设直线EF的解析式为y=kx+b,将点E和点F的坐标代入可得,
∴
解得k=2,b=-3
∴EF的解析式为y=2x-3.
故答案为:y=2x-3.
本题考查了矩形的性质和待定系数法求一次函数解析式,正确求得点F的坐标为(1,-1)是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.
【解析】
(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;
(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
∵,
∴Rt△ADF≌Rt△ABE(HL)
∴BE=DF;
(2)四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
BC=DC(正方形四条边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),
即CE=CF,
在△COE和△COF中,
,
∴△COE≌△COF(SAS),
∴OE=OF,
又OM=OA,
∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),
∵AE=AF,
∴平行四边形AEMF是菱形.
25、 (1)见解析;(2)OD.
【解析】
(1)运用平行四边形性质,对角线相互平分,即可确定BO=OD,然后运用线段的和差即可求得BE=DF.
(2)根据矩形对角线相等且相互平分,可确定OE=OD
【详解】
(1)证明:分别连接DE、BF
∵四边形ABCD是平行四边形
∴OB=OD
又∵OE=OF
∴四边形DEBF是平行四边形
∴BE=DF
(2)当OE=OD时,四边形BEDF是矩形
∵OE=OF,OB=OD
∴四边形BEDF是平行四边形
又∵OE=OD,EF=2OE,BD=20D
∴EF=BD
∴四边形BEDF是矩形
本题主要考查了平行四边形额性质和矩形的判定,有一定难度,需要认真审题和分析.
26、(1)详见解析;(2)OA=OB,理由详见解析.
【解析】
试题分析:(1)根据SSS定理推出全等即可;(2)根据全等得出∠OAB=∠OBA,根据等角对等边即可得出OA=OB.
试题解析:(1)证明:∵在△ADB和△BCA中,AD=BC,AB=BA,BD=AC,
∴△ADB≌△BCA(SSS);
(2)解:OA=OB,
理由是:∵△ADB≌△BCA,
∴∠ABD=∠BAC,
∴OA=OB.
考点:全等三角形的判定与性质;等腰三角形的判定
题号
一
二
三
四
五
总分
得分
参赛者
推荐语
读书心得
读书讲座
甲
87
85
95
乙
94
88
88
x
…
﹣2
﹣1
0
1
2
…
y
…
12
7
2
m
﹣8
…
2024-2025学年甘肃省武威市民勤县九年级数学第一学期开学学业质量监测试题【含答案】: 这是一份2024-2025学年甘肃省武威市民勤县九年级数学第一学期开学学业质量监测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省武威市民勤实验中学九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年甘肃省武威市民勤实验中学九上数学开学学业水平测试模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省武威市凉州区洪祥中学九年级数学第一学期开学检测试题【含答案】: 这是一份2024-2025学年甘肃省武威市凉州区洪祥中学九年级数学第一学期开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。