苏科版(2024)八年级上册3.1 勾股定理优质课ppt课件
展开1955 年希腊发行了一枚纪念邮票,邮票上的图案是根据一个著名的数学定理设计的. 观察这枚邮票上的图案,数一数图案中 3个正方形内小方格的个数,你有哪此发现?
如图 3-1,若将小方格的面积看作 1,则以 BC 为一边的正方形的面积是9,以AC为一边的正方形的面积是 16. 你能知道以 AB 为一边的正方形的面积吗?
在图中,3个正方形面积之间有怎样的数量关系?
图中3个正方形的面积之间的数量关系是以直角三角形的两条直角边为一边向外部所作的正方形的面积之和等于以斜边为一边向外部所作的正方形的面积.
在下面的方格纸上,任意画一个顶点都在格点上的直角三角形并分别以这个直角三角形的各边为一边向三角形外部作正方形,仿照上面的方法计算以斜边为一边的正方形的面积.
你所画的 3 个正方形面积之间有怎样的数量关系?请与同学交流.
直角三角形的斜边、直角边有如下关系:
勾股定理 直角三角形两条直角边 a、b 的平方和等于斜边 c 的平方.a2+b2=c2
如图,在 Rt△ABC 中,∠ C=90°, AB=c,AC=b,BC=a,则 a2+b2=c2.
a2=c2-b2;b2=c2-a2.
我国古代把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”. 据《周算经》记载,公元前 1000 多年就发现了“勾三股四弦五”的结论.
在Rt△ABC 中, ∠A,∠B,∠C 的对边分别为 a,b,c,∠C=90°. (1) 已知 a=3,b=4,求c; (2) 已知 c=17,a=8,求b; (3) 已知 a∶b = 5∶12,c=13,求a 和b.
在一个直角三角形中: 1. 已知两条边长,若求斜边,则直接利用勾股定理的公式;若求直角边,则利用勾股定理的变形公式; 2. 已知一条边长以及另外两条边之间的数量关系,则需要设未知数表示另外两条边,然后根据勾股定理的公式列方程求解.
(1) 已知 a=3,b=4,求c;
解:∵∠C=90°,a=3,b=4, ∴由勾股定理,得 c2=a2+b2=32+42=25, ∴ c=5.
(2) 已知 c=17,a=8,求b;
解:∵∠C=90°,c=17,a=8, ∴由勾股定理,得 b2=c2-a2=172-82=225, ∴ b=15.
(3) 已知 a∶b = 5∶12,c=13,求a 和b.
解:∵ a∶b = 5∶12, ∴设a=5k,b=12k(k > 0), ∴ 由勾股定理,得(5k)2+ (12k)2=132, 解得 k=1 (k=-1 不符合题意,舍去), ∴ a=5,b=12.
1. 求下列直角三角形中未知边的长.
解:①由勾股定理,得x2=52+122=169,∴x=13. ②由勾股定理,得x2=172-82=225,∴x=15. ③由勾股定理,得x2=202-162=144,∴x=12.
2. 求下列图中 x、y、z 的值.
解:81+144=x2, x2=225, x=15.
解:y2+144=169, y2=25, y=5.
解:z2+576=625, z2=49, z=7.
3. 如图,△ABC 和△DEF 都不是直角三角形,分别以 △ABC和△DEF的各边为一边向三角形外部作正方形, 其中两个小正方形面积的和等于大正方形的面积吗?
解:两个小正方形面积的和不等于大正方形的面积.
第一个图中△ABC 为锐角三角形,分别以 AC,BC,AB 为边的正方形的面积分别是 5,8,9, ∵5+8>9, ∴两个小正方形面积的和大于大正方形的面积;
第二个图中△DEF为钟角三角形,分别以 DE,EF,DF 为边的正方形的面积分别是 18,9,45, ∵18+9<45, ∴两个小正方形面积的和小于大正方形的面积. 事实上,以上结论对于所有的锐角三角形和钟角二角形都成立.
1. 制作 4 张如图 3-2 的直角三角形纸片.
2. 小明用这 4 张直角三角形纸片拼成图 3-3. 试用两种 不同的方法计算图 3-3的面积,你有什么发现?
3. 如图 3-4,把这 4 张纸片拼成一个边长为c的正方形,它的面积为 c2,你能用图3-4验证勾股定理吗?
a2 + b2 = c2. 勾股定理得到验证.
公元3世纪,我国数学家赵爽曾用图 3-4 验证了勾股定理,这个图形被称为“弦图”.
2002 年国际数学家大会在北京召开,为弘扬我国古代数学文明.大会选用了“弦图”作为会标的中心图案 (如图 3-5).
把一个直立的火柴盒放倒. 你能用不同的方法计算梯形ABCD的面积,再次验证勾股定理吗?
在 Rt△ABC中,∠C=90°. (1) 如果 BC=9,AC=12,那么AB=________; (2) 如果 BC=8,AB=10,那么AC=________; (3) 如果 AB=13,AC=12,那么BC=________; (4) 如果 AB=61,BC=11,那么AC=________.
人教版八年级下册17.1 勾股定理说课ppt课件: 这是一份人教版八年级下册<a href="/sx/tb_c10261_t3/?tag_id=26" target="_blank">17.1 勾股定理说课ppt课件</a>,共21页。PPT课件主要包含了x+1,设水深为x米,谢谢指导,Thanks等内容,欢迎下载使用。
初中数学苏科版八年级上册3.1 勾股定理教学课件ppt: 这是一份初中数学苏科版八年级上册3.1 勾股定理教学课件ppt,共42页。PPT课件主要包含了1勾股定理,可以用“补”的方法,可以用“割”的方法,数学表达式,勾股定理的变形公式,解法提醒,1练习等内容,欢迎下载使用。
2020-2021学年17.1 勾股定理教学ppt课件: 这是一份2020-2021学年17.1 勾股定理教学ppt课件,文件包含2021-2022人教版数学八年级下册第十七章171勾股定理第1课时课件ppt、2021-2022人教版数学八年级下册第十七章171勾股定理第2课时课件ppt、2021-2022人教版数学八年级下册第十七章171勾股定理第3课时课件ppt、2021-2022人教版数学八年级下册第十七章171勾股定理第1课时同步练习doc、2021-2022人教版数学八年级下册第十七章171勾股定理第2课时同步练习doc、2021-2022人教版数学八年级下册第十七章171勾股定理第3课时同步练习doc等6份课件配套教学资源,其中PPT共48页, 欢迎下载使用。