![新高考数学第一轮复习讲义命题方向全归类(新高考专用)第5讲数列与不等式(2022-2023年高考真题)(原卷版+解析)第1页](http://www.enxinlong.com/img-preview/3/3/16139691/0-1725590916845/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学第一轮复习讲义命题方向全归类(新高考专用)第5讲数列与不等式(2022-2023年高考真题)(原卷版+解析)第2页](http://www.enxinlong.com/img-preview/3/3/16139691/0-1725590916929/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学第一轮复习讲义命题方向全归类(新高考专用)第5讲数列与不等式(2022-2023年高考真题)(原卷版+解析)第3页](http://www.enxinlong.com/img-preview/3/3/16139691/0-1725590916966/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:新高考数学第一轮复习讲义命题方向全归类(新高考专用)(2022-2023年高考真题)(原卷版+解析)
- 新高考数学第一轮复习讲义命题方向全归类(新高考专用)第3讲三角函数与解三角形(2022-2023年高考真题)(原卷版+解析) 试卷 0 次下载
- 新高考数学第一轮复习讲义命题方向全归类(新高考专用)第4讲平面向量与复数(2022-2023年高考真题)(原卷版+解析) 试卷 0 次下载
- 新高考数学第一轮复习讲义命题方向全归类(新高考专用)第6讲立体几何(2022-2023年高考真题)(原卷版+解析) 试卷 0 次下载
- 新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析) 试卷 0 次下载
- 新高考数学第一轮复习讲义命题方向全归类(新高考专用)第8讲计数原理与概率统计(2022-2023年高考真题)(原卷版+解析) 试卷 0 次下载
新高考数学第一轮复习讲义命题方向全归类(新高考专用)第5讲数列与不等式(2022-2023年高考真题)(原卷版+解析)
展开
这是一份新高考数学第一轮复习讲义命题方向全归类(新高考专用)第5讲数列与不等式(2022-2023年高考真题)(原卷版+解析),共22页。试卷主要包含了若,,,则,若,满足约束条件则的最大值是,记为等差数列的前项和,记为等比数列的前项和,若,,则,若,满足,则等内容,欢迎下载使用。
1.(2023•天津)若,,,则
A.B.C.D.
2.(2022•浙江)若实数,满足约束条件则的最大值是
A.20B.18C.13D.6
3.(2022•乙卷)若,满足约束条件则的最大值是
A.B.4C.8D.12
4.(2022•上海)若实数、满足,下列不等式中恒成立的是
A.B.C.D.
5.(2023•甲卷)记为等差数列的前项和.若,,则
A.25B.22C.20D.15
6.(2023•天津)已知为等比数列,为数列的前项和,,则的值为
A.3B.18C.54D.152
7.(2023•甲卷)已知等比数列中,,为前项和,,则
A.7B.9C.15D.30
8.(2023•新高考Ⅱ)记为等比数列的前项和,若,,则
A.120B.85C.D.
9.(2022•乙卷)已知等比数列的前3项和为168,,则
A.14B.12C.6D.3
二.多选题
10.(2022•新高考Ⅱ)若,满足,则
A.B.C.D.
三.填空题
11.(2023•乙卷)若,满足约束条件,则的最大值为 .
12.(2023•甲卷)设,满足约束条件,设,则的最大值为 .
13.(2022•上海),,求的最小值 .
14.(2023•甲卷)记为等比数列的前项和.若,则的公比为 .
15.(2023•乙卷)已知为等比数列,,,则 .
16.(2023•上海)已知首项为3,公比为2的等比数列,设等比数列的前项和为,则 .
17.(2022•乙卷)记为等差数列的前项和.若,则公差 .
18.(2022•上海)已知等差数列的公差不为零,为其前项和,若,则,2,,中不同的数值有 个.
四.解答题
19.(2023•乙卷)记为等差数列的前项和,已知,.
(1)求的通项公式;
(2)求数列的前项和.
20.(2023•甲卷)已知数列中,,设为前项和,.
(1)求的通项公式;
(2)求数列的前项和.
21.(2023•新高考Ⅱ)已知为等差数列,,记,为,的前项和,,.
(1)求的通项公式;
(2)证明:当时,.
22.(2023•新高考Ⅰ)设等差数列的公差为,且.令,记,分别为数列,的前项和.
(1)若,,求的通项公式;
(2)若为等差数列,且,求.
23.(2022•全国)设是首项为1,公差不为0的等差数列,且,,成等比数列.
(1)求的通项公式;
(2)令,求数列的前项和.
24.(2022•上海)数列对任意且,均存在正整数,,满足,,.
(1)求可能值;
(2)命题:若,,,成等差数列,则,证明为真,同时写出逆命题,并判断命题是真是假,说明理由;
(3)若,成立,求数列的通项公式.
25.(2022•天津)设是等差数列,是等比数列,且.
(1)求与的通项公式;
(2)设的前项和为,求证:;
26.(2022•浙江)已知等差数列的首项,公差.记的前项和为.
(Ⅰ)若,求;
(Ⅱ)若对于每个,存在实数,使,,成等比数列,求的取值范围.
27.(2022•新高考Ⅰ)记为数列的前项和,已知,是公差为的等差数列.
(1)求的通项公式;
(2)证明:.
28.(2022•甲卷)记为数列的前项和.已知.
(1)证明:是等差数列;
(2)若,,成等比数列,求的最小值.
29.(2022•新高考Ⅱ)已知是等差数列,是公比为2的等比数列,且.
(1)证明:;
(2)求集合,中元素的个数.
第5讲 数列与不等式
一.选择题
1.(2023•天津)若,,,则
A.B.C.D.
【答案】
【解析】,在上单调递增,
,
故,
所以,
,在,上单调递增,
,
故,即,
所以.
故选:.
2.(2022•浙江)若实数,满足约束条件则的最大值是
A.20B.18C.13D.6
【答案】
【解析】实数,满足约束条件
则不等式组表示的平面区域为如图所示的阴影部分,
由已知可得,
由图可知:当直线过点时,取最大值,
则的最大值是,
故选:.
3.(2022•乙卷)若,满足约束条件则的最大值是
A.B.4C.8D.12
【答案】
【解析】作出可行域如图阴影部分所示,
由图可知,当取点时,目标函数取得最大值,且最大为8.
故选:.
4.(2022•上海)若实数、满足,下列不等式中恒成立的是
A.B.C.D.
【答案】
【解析】因为,所以,当且仅当时取等号,
又,所以,故正确,错误,
,当且仅当,即时取等号,故错误,
故选:.
5.(2023•甲卷)记为等差数列的前项和.若,,则
A.25B.22C.20D.15
【答案】
【解析】等差数列中,,
所以,
,
故,
则,,
则.
故选:.
6.(2023•天津)已知为等比数列,为数列的前项和,,则的值为
A.3B.18C.54D.152
【答案】
【解析】因为为等比数列,,
所以,,
由等比数列的性质可得,,
即,
所以或(舍,
所以,,
则.
故选:.
7.(2023•甲卷)已知等比数列中,,为前项和,,则
A.7B.9C.15D.30
【答案】
【解析】等比数列中,设公比为,
,为前项和,,显然,
(如果,可得矛盾,如果,可得矛盾),
可得,
解得,即或,
所以当时,.
当时,.没有选项.
故选:.
8.(2023•新高考Ⅱ)记为等比数列的前项和,若,,则
A.120B.85C.D.
【答案】
【解析】等比数列中,,,显然公比,
设首项为,则①,②,
化简②得,解得或(不合题意,舍去),
代入①得,
所以.
故选:.
9.(2022•乙卷)已知等比数列的前3项和为168,,则
A.14B.12C.6D.3
【答案】
【解析】设等比数列的公比为,,由题意,.
前3项和为,,
,,
则,
故选:.
二.多选题
10.(2022•新高考Ⅱ)若,满足,则
A.B.C.D.
【答案】
【解析】方法一:由可得,,
令,则,
,,故错,对,
,,
故对,错,
方法二:对于,,由可得,,即,
,,故错,对,
对于,,由得,,
,故对;
,,
,故错误.
故选:.
三.填空题
11.(2023•乙卷)若,满足约束条件,则的最大值为 .
【答案】8.
【解析】作出不等式组表示的平面区域,如图所示:
由可得,
则表示直线在轴上的截距,截距越小,越大,
结合图形可知,当经过点时,最大,
由可得,,即,
此时取得最大值8.
故答案为:8.
12.(2023•甲卷)设,满足约束条件,设,则的最大值为 .
【答案】15.
【解析】由题意,作出,满足约束条件表示的平面区域,如图中阴影部分所示,
目标函数,可化为直线,
由,可得,
即,
当直线过点时,直线在轴上的截距最大,此时目标函数取得最大值,
代入可得.
故答案为:15.
13.(2022•上海),,求的最小值 .
【答案】.
【解析】如图所示:
由,,可知行域为直线的左上方和的右上方的公共部分,
联立,可得,即图中点,,
当目标函数沿着与正方向向量的相反向量平移时,离开区间时取最小值,
即目标函数过点,时,取最小值:.
故答案为:.
14.(2023•甲卷)记为等比数列的前项和.若,则的公比为 .
【答案】.
【解析】等比数列中,,
则,
所以,
解得.
故答案为:.
15.(2023•乙卷)已知为等比数列,,,则 .
【答案】.
【解析】等比数列,
,解得,
而,可得,
即,
.
故答案为:.
16.(2023•上海)已知首项为3,公比为2的等比数列,设等比数列的前项和为,则 .
【答案】189.
【解析】等比数列的首项为3,公比为2,
.
故答案为:189.
17.(2022•乙卷)记为等差数列的前项和.若,则公差 .
【答案】2.
【解析】,
,
为等差数列,
,
,解得.
故答案为:2.
18.(2022•上海)已知等差数列的公差不为零,为其前项和,若,则,2,,中不同的数值有 个.
【答案】98.
【解析】等差数列的公差不为零,为其前项和,,
,解得,
,
,,1,,中,
,,
其余各项均不相等,
,,中不同的数值有:.
故答案为:98.
四.解答题
19.(2023•乙卷)记为等差数列的前项和,已知,.
(1)求的通项公式;
(2)求数列的前项和.
【解析】(1)在等差数列中,,.
,即,
得,,
则.
(2),
即时,,
当时,,
当时,数列的前项和,
当时,数列的前项和.
20.(2023•甲卷)已知数列中,,设为前项和,.
(1)求的通项公式;
(2)求数列的前项和.
【解析】(1)当时,,解得,
当时,,
,,
当时,可得,
,
当或时,,适合上式,
的通项公式为;
(2)由(1)可得,
,,
,
.
21.(2023•新高考Ⅱ)已知为等差数列,,记,为,的前项和,,.
(1)求的通项公式;
(2)证明:当时,.
【解析】(1)设等差数列的公差为,
,为的前项和,,,
则,即,解得,
故;
(2)证明:由(1)可知,,
,
当为偶数时,,
,
,
当为奇数时,,,
,
故原式得证.
22.(2023•新高考Ⅰ)设等差数列的公差为,且.令,记,分别为数列,的前项和.
(1)若,,求的通项公式;
(2)若为等差数列,且,求.
【解析】(1),,
根据题意可得,
,
,又,
解得,,
,;
(2)为等差数列,为等差数列,且,
根据等差数列的通项公式的特点,可设,则,且;
或设,则,且,
①当,,时,
则,
,,又,
解得;
②当,,时,
则,
,,又,
此时无解,
综合可得.
23.(2022•全国)设是首项为1,公差不为0的等差数列,且,,成等比数列.
(1)求的通项公式;
(2)令,求数列的前项和.
【解析】(1)已知是首项为1,公差不为0的等差数列,
又,,成等比数列,
则,
即,
又,
即,
则;
(2)由(1)可得:,
则,
则当为偶数时,,
当为奇数时,,
即.
24.(2022•上海)数列对任意且,均存在正整数,,满足,,.
(1)求可能值;
(2)命题:若,,,成等差数列,则,证明为真,同时写出逆命题,并判断命题是真是假,说明理由;
(3)若,成立,求数列的通项公式.
【解析】(1),或.
(2),,,,,,,为等差数列,,
.
逆命题:若,则,,,,,,,为等差数列是假命题,举例:
,,,,,,,,.
(3)因为,
,,
,
,
以下用数学归纳法证明数列单调递增,即证明恒成立:
当,明显成立,
假设时命题成立,即,
则,则,命题得证.
回到原题,分类讨论求解数列的通项公式:
1.若,则矛盾,
2.若,则,,,
此时,
,
3.若,则,
,,
(由(2)知对任意成立),
,
事实上:矛盾.
综上可得.
25.(2022•天津)设是等差数列,是等比数列,且.
(1)求与的通项公式;
(2)设的前项和为,求证:;
【解析】(1)设等差数列的公差为,等比数列的公比为,
,
,,
解得,
,.
(2)证明:,
要证明,
即证明,
即证明,
即证明,
由数列的通项公式和前项和的关系得:,
.
26.(2022•浙江)已知等差数列的首项,公差.记的前项和为.
(Ⅰ)若,求;
(Ⅱ)若对于每个,存在实数,使,,成等比数列,求的取值范围.
【解析】(Ⅰ)因为等差数列的首项,公差,
因为,可得,即,
,即,
整理可得:,解得,
所以,
即;
(Ⅱ)因为对于每个,存在实数,使,,成等比数列,
则,,
整理可得:,则△恒成立在,
整理可得,
当时,可得或,而,
所以的范围为;
时,不等式变为,解得,而,
所以此时,,
当时,,则符合要求,
综上所述,对于每个,的取值范围为,,使,,成等比数列.
27.(2022•新高考Ⅰ)记为数列的前项和,已知,是公差为的等差数列.
(1)求的通项公式;
(2)证明:.
【解析】(1)已知,是公差为的等差数列,
所以,整理得,①,
故当时,,②,
①②得:,
故,
化简得:,,,,;
所以,
故(首项符合通项).
所以.
证明:(2)由于,
所以,
所以.
28.(2022•甲卷)记为数列的前项和.已知.
(1)证明:是等差数列;
(2)若,,成等比数列,求的最小值.
【解析】(1)证明:由已知有:①,
把换成,②,
②①可得:,
整理得:,
由等差数列定义有为等差数列;
(2)由已知有,设等差数列的首项为,由(1)有其公差为1,
故,解得,故,
所以,
故可得:,,,
故在或者时取最小值,,
故的最小值为.
29.(2022•新高考Ⅱ)已知是等差数列,是公比为2的等比数列,且.
(1)证明:;
(2)求集合,中元素的个数.
【解析】(1)证明:设等差数列的公差为,
由,得,则,
由,得,
即,
.
(2)由(1)知,,
由知,,
,即,
又,故,则,
故集合,中元素个数为9个.
相关试卷
这是一份新高考数学第一轮复习讲义命题方向全归类(新高考专用)第8讲计数原理与概率统计(2022-2023年高考真题)(原卷版+解析),共31页。试卷主要包含了若,则等内容,欢迎下载使用。
这是一份新高考数学第一轮复习讲义命题方向全归类(新高考专用)第7讲解析几何(2022-2023年高考真题)(原卷版+解析),共45页。试卷主要包含了已知实数,满足,则的最大值是,双曲线的左、右焦点分别为,,设椭圆,的离心率分别为,等内容,欢迎下载使用。
这是一份新高考数学第一轮复习讲义命题方向全归类(新高考专用)第6讲立体几何(2022-2023年高考真题)(原卷版+解析),共51页。试卷主要包含了某几何体的三视图如图所示(单位等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)