[数学][期中]广东省惠州市2023-2024学年七年级下学期期中考试模拟试题(解析版)
展开1. 下列计算正确的是( )
A. B. C. D.
【答案】D
【解析】A、,故原计算错误;
B、,故原计算错误;
C、,故原计算错误;
D、,故原计算正确;
故选:D.
2. 点是由点N向上平移3个单位得到的,则点N的坐标为( )
A. B. C. D.
【答案】C
【解析】∵点M(-2,5)是由点N向上平移3个单位得到的,
∴点N的坐标为(-2,5-3),即(-2,2),
故选:C.
3. 估计的值在( )
A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间
【答案】B
【解析】∵25<29<36,
∴5<<6,即5和6之间,
故选:B.
4. 下列方程组中,属于二元一次方程组的是( )
A. B. C. D.
【答案】B
【解析】A、方程组中含有三个未知数,不是二元一次方程组,故不符合题意.
B、是二元一次方程组,故符合题意.
C、是二元二次方程组,不是二元一次方程组,故不符合题意.
D、是二元二次方程组,不是二元一次方程组,故不符合题意.
故选:B.
5. 下列说法中,正确的是( )
A. 点P(3,2)到x轴距离是3
B. 在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点
C. 若y=0,则点M(x,y)在y轴上
D. 在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号
【答案】D
【解析】A、点P(3,2)到x轴距离是2,此选项错误;
B、在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示不同的点,此选项错误;
C、若y=0,则点M(x,y)在x轴上,此选项错误;
D、在平面直角坐标系中,第三象限内点的横坐标与纵坐标同为负号,此选项正确;
故选:D.
6. 如图,直线,被直线所截,下列条件能判断的是( )
A. B. C. D. ,
【答案】C
【解析】
【分析】根据平行线的判定定理即可作出判断.
【详解】A、是对顶角相等,无法判断,故不符合题意;
B、是邻补角,无法判断,故不符合题意;
C、是同位角相等,因而有,故符合题意;
D、∠2与∠4尽管是内错角,但不相等,也无法判断,故不符合题意;
故选:C.
7. 如图直线ab,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为( )
A. 115°B. 125°C. 155°D. 165°
【答案】A
【解析】如图,过点D作ca.
则∠1=∠CDB=25°.
又ab,DE⊥b,
∴bc,DE⊥c,
∴∠2=∠CDB+90°=115°.
故选A.
8. 如图,直线与直线CD交于点O,于点O,则与的关系是( )
A. 互为对顶角 B. 相等 C. 互补 D. 互余
【答案】D
【解析】,
,
又,
,即与互为余角.
故选:D.
9. 《九章算术》中的方程问题:“五只雀、六只燕,共重斤(古代斤=两),雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为两、两,下列方程组正确的为( )
A. B.
C. D.
【答案】C
【解析】由题意可得,
,
故选:C.
10. 如图,动点P在平面直角坐标系中按图中所示方向运动,第一次从原点O运动到点,第二次运动到点,第三次运动到点,第四次运动到点,第五次运动到点,第六次运动到点,按这样的运动规律,点的纵坐标是( )
A. B. 0C. 1D. 2
【答案】B
【解析】观察图像点的坐标:、、、、、、、,可以发现规律:横坐标与次数相等,纵坐标每7次运动组成一个循环:1、1、0、-2、0、2、0,
,
动点的坐标是,
动点的纵坐标是0,
故选:B.
二、填空题:本大题共5小题,每小题3分.共15分.
11. 4的算术平方根是________.
【答案】2
【解析】,
4的算术平方根是2,
故答案为:2.
12. 若,则_____.
【答案】
【解析】由题意知, ,,
解得,,,
∴,
故答案为:.
13. 如图,是由通过平移得到,且点,,,在同一条直线上,若,,则的长度是_____.
【答案】
【解析】是由通过平移得到,
,
,,
,
故答案为:
14. 如图,若,与分别相交于点E,F,的平分线和的平分线交于点P,则的度数是_____.
【答案】
【解析】∵,
∴,
又、分别是、的平分线,
∴,,
∴,
∴,
故答案为:.
15. 如图,在平面直角坐标系中,,,,一只瓢虫从点A出发以3个单位长度/秒的速度沿循环爬行.问第2025秒瓢虫在点______处(填写坐标).
【答案】
【解析】∵,,,,
∴,,
∴,
∴瓢虫爬行一个循环所用的时间为,
∵,且,
∴当秒时,瓢虫坐标为,
故答案:.
三、解答题共65分.
16 计算:.
解:原式
17. 解方程组:
解:,
①×2+②,可得5x=15,
解得x=3,
把x=3代入①,解得y=﹣1,
∴原方程组的解是.
18. 如图,直线、相交于点O,,垂足为O,且,求的度数.
解:∵, ,
∴,,
∵,
∴,
∵,
∴,
∴.
19. 一个正数x的两个平方根分别是和
(1)求a、x的值
(2)求的立方根
解:(1)由题意,得+ =0,
解得a=2
∴x=(2a+1)2=52=25;
(2)∵x+a=27
∴=3
即x+a的立方根是3.
20. 已知方程组与方程组的解相同,求的值.
解:∵方程组与方程组的解相同,
∴,
解得,
将代入得:
,
解得,
∴.
21. 某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:
(1)春游学生共多少人?原计划45座客车多少辆?
(2)若租用同一种车,要使每位同学都有座位,应该怎样租用才合算?
解:(1)设七年级人数是x人,原计划租45座客车y辆,
由题意得:,
解得:
所以七年级共有240人,计划租45座客车5辆;
(2)只租45座需:
(元),
只租60座需: (元),
,
∴租4辆60座更合算.
22. 观察等式:,,,….
(1)请用含n(,且n为整数)式子表示出上述等式的规律________;
(2)按上述规律,若,则a+b=________;
(3)仿照上面内容,当时,计算出结果,验证你在(1)中得到的规律.
解:(1)∵,,,….
∴,
故答案为:;
(2)根据题意得,
∴,
∴;
故答案为:;
(3)当时,.
23. 如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.
(1)a= ,b= ,点B的坐标为 ;
(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;
(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.
解:(1)∵a、b满足,
∴a−4=0,b−6=0,
解得:a=4,b=6,
∴点B的坐标是(4,6).
故答案是:4;6;(4,6).
(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O−C−B−A−O的线路移动,
∴2×4=8,
∵OA=4,OC=6,
∴当点P移动4秒时,在线段CB上,离点C的距离是:8−6=2,
即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6).
(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,
第一种情况,当点P在OC上时,
点P移动的时间是:5÷2=2.5秒,
第二种情况,当点P在BA上时,
点P移动的时间是:(6+4+1)÷2=5.5秒,
故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.
[数学][期中]广东省惠州市2023-2024学年七年级下学期期中模拟试题(解析版): 这是一份[数学][期中]广东省惠州市2023-2024学年七年级下学期期中模拟试题(解析版),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
[数学][期末]广东省惠州市惠城区2023-2024学年七年级下学期期末模拟试题(解析版): 这是一份[数学][期末]广东省惠州市惠城区2023-2024学年七年级下学期期末模拟试题(解析版),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
数学:广东省惠州市博罗县四校联考2023-2024学年七年级下学期期中试题(解析版): 这是一份数学:广东省惠州市博罗县四校联考2023-2024学年七年级下学期期中试题(解析版),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。