年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    天津市新华中学2024-2025学年高三上学期开学测试数学试卷(解析版)

    天津市新华中学2024-2025学年高三上学期开学测试数学试卷(解析版)第1页
    天津市新华中学2024-2025学年高三上学期开学测试数学试卷(解析版)第2页
    天津市新华中学2024-2025学年高三上学期开学测试数学试卷(解析版)第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    天津市新华中学2024-2025学年高三上学期开学测试数学试卷(解析版)

    展开

    这是一份天津市新华中学2024-2025学年高三上学期开学测试数学试卷(解析版),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    1. 设全集,集合,则( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】先求出,再根据交集的定义可求.
    【详解】,故,
    故选:A.
    2. 已知命题,总有,则为( )
    A. ,使得B. ,使得
    C. ,总有D. ,总有
    【答案】B
    【解析】
    【分析】直接写出命题的否定即可.
    【详解】因为,总有,则为,使得
    故选:B
    3. 设、,则“”是“”的( )
    A. 充分不必要条件B. 必要不充分条件
    C. 充要条件D. 既不充分也不必要条件
    【答案】C
    【解析】
    【分析】设,分析函数在上的单调性,结合函数的单调性以及充分条件、必要条件判断可得出合适的选项.
    【详解】设,则函数在、上均为增函数,
    又因为函数在上连续,故函数在上单调递增,
    若,则,即;
    若,则,可得.
    因此,“”是“”的充要条件.
    故选:C.
    4. 设函数,则函数的图象可能为( )
    A. B.
    C. D.
    【答案】B
    【解析】
    【分析】依据函数的奇偶性和函数值特征进行鉴别即可解决.
    【详解】函数的定义域为
    则为偶函数,图像关于y轴轴对称,排除选项AC;
    又,则排除选项D.
    故选:B
    5. 下列函数是偶函数的是( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据偶函数的判定方法一一判断即可.
    【详解】对A,设,函数定义域为,但,,则,故A错误;
    对B,设,函数定义域为,
    且,则为偶函数,故B正确;
    对C,设,函数定义域为,不关于原点对称, 则不是偶函数,故C错误;
    对D,设,函数定义域为,因为,,
    则,则不是偶函数,故D错误.
    故选:B.
    6. 已知角终边经过点,则( )
    A. B. C. D. 1
    【答案】C
    【解析】
    【分析】利用诱导公式化简,再进行弦化切代入即可.
    【详解】
    因为角的终边经过点,则,则,
    故选:C.
    7. 已知,则( )
    A. 25B. 5C. D.
    【答案】C
    【解析】
    【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.
    【详解】因为,,即,所以.
    故选:C.
    8. 已知,,,则的大小关系为
    A. B.
    C. D.
    【答案】A
    【解析】
    【分析】
    利用等中间值区分各个数值的大小.
    【详解】,

    ,故,
    所以.
    故选A.
    【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.
    9. 设函数是上的减函数,则实数的取值范围是( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】利用分段函数单调性及一次函数,二次函数的单调性计算即可.
    【详解】由题意可得:,
    故实数的取值范围是.
    故选:A.
    10. 已知函数满足,对任意,且,都有成立,且,则的解集是( )
    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】由已知条件得到的图象关于对称,从而可知在上为增函数,在上为减函数,且,再画出折线图表示出函数的单调性,即可得到答案.
    【详解】因数满足.
    所以的图象关于对称.
    因为函数对任意,且,都有成立,
    所以在上为增函数.
    又因为的图象关于对称,,
    所以在为减函数,且.
    用折线图表示函数的单调性,如图所示:
    由图知:.
    故选:D.
    11. 已知函数的定义域为R,且为奇函数,为偶函数,当时,,则( )
    A. 0B. 1C. 2D. 2025
    【答案】C
    【解析】
    【分析】由函数奇偶性,确定为周期函数,再结合,求得,即可求解.
    【详解】因为为奇函数,所以关于点中心对称,
    又为偶函数,所以关于直线对称,
    所以为周期函数且周期,
    ∴,∵,∴,∴.
    故选:C.
    12. 设函数若方程恰有2个实数解,则实数a的取值范围是( )
    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】化简,进行参变分离,求出,画出图像根据图像得出结论.
    【详解】化简得
    当时,设
    ∴,
    当时,,在上单调递增;
    当时,,在上单调递减;
    ,且当时, ;
    当时,设
    易知函数在分别单调递减,
    画出函数图像

    根据图像可得.
    故选:D.
    【点睛】本题采取的是数形结合的思想,在进行分离变量的时候要探讨参数的取值范围.
    二、填空题(本大题共6小题,每小题4分,共24分)
    13. 已知集合A={x∈R||x+2|

    相关试卷

    天津市新华中学2024-2025学年高三上学期开学测试数学试卷:

    这是一份天津市新华中学2024-2025学年高三上学期开学测试数学试卷,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    天津市新华中学2024-2025学年高三上学期开学测试数学试卷:

    这是一份天津市新华中学2024-2025学年高三上学期开学测试数学试卷,共4页。

    北京市清华大学附属中学2024-2025学年高三上学期开学调研数学试卷(解析版):

    这是一份北京市清华大学附属中学2024-2025学年高三上学期开学调研数学试卷(解析版),共26页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map