所属成套资源:新高考物理一轮复习讲义 (含解析)
新高考物理一轮复习讲义 第7章 专题强化11 碰撞模型及拓展
展开
这是一份新高考物理一轮复习讲义 第7章 专题强化11 碰撞模型及拓展,共16页。试卷主要包含了理解碰撞的种类及其遵循的规律等内容,欢迎下载使用。
题型一 碰撞
基础回扣
1.碰撞
碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.
2.特点
在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.
3.分类
技巧点拨
1.碰撞问题遵守的三条原则
(1)动量守恒:p1+p2=p1′+p2′.
(2)动能不增加:Ek1+Ek2≥Ek1′+Ek2′.
(3)速度要符合实际情况
①碰前两物体同向运动,若要发生碰撞,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.
②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.
2.弹性碰撞的结论
以质量为m1、速度为v1的小球与质量为m2的静止小球发生弹性碰撞为例,则有
m1v1=m1v1′+m2v2′
eq \f(1,2)m1v12=eq \f(1,2)m1v1′2+eq \f(1,2)m2v2′2
联立解得:v1′=eq \f(m1-m2,m1+m2)v1,v2′=eq \f(2m1,m1+m2)v1
讨论:①若m1=m2,则v1′=0,v2′=v1(速度交换);
②若m1>m2,则v1′>0,v2′>0(碰后两物体沿同一方向运动);当m1≫m2时,v1′≈v1,v2′≈2v1;
③若m1M,第一次碰撞后,A与C速度同向,且A的速度小于C的速度,不可能与B发生碰撞;如果m=M,第一次碰撞后,A停止,C以A碰前的速度向右运动,A不可能与B发生碰撞,所以只需考虑mm2,m2的左边有一固定挡板.由图示位置静止释放m1、m2,当m1与m2相距最近时m1的速度为v1,则在以后的运动过程中( )
图3
A.m1的最小速度是0
B.m1的最小速度是eq \f(m1-m2,m1+m2)v1
C.m2的最大速度是v1
D.m2的最大速度是eq \f(2m1,m1+m2)v1
答案 BD
解析 由题意结合题图可知,当m1与m2相距最近时,m2的速度为0,此后,m1在前,做减速运动,m2在后,做加速运动,当再次相距最近时,m1减速结束,m2加速结束,因此此时m1速度最小,m2速度最大,在此过程中系统动量和机械能均守恒,m1v1=m1v1′+m2v2,eq \f(1,2)m1v12=eq \f(1,2)m1v1′2+eq \f(1,2)m2v22,解得v1′=eq \f(m1-m2,m1+m2)v1,v2=eq \f(2m1,m1+m2)v1,B、D选项正确.
例3 如图4所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H=5 m的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h=1.8 m高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知mA=1 kg,mB=2 kg,mC=3 kg,取g=10 m/s2.求:
图4
(1)滑块A与滑块B碰撞结束瞬间的速度大小;
(2)被压缩弹簧的最大弹性势能;
(3)滑块C落地点与桌面边缘的水平距离.
答案 (1)2 m/s (2)3 J (3)2 m
解析 (1)滑块A从光滑曲面上h高处由静止开始滑下的过程机械能守恒,设其滑到底面的速度为v1,由机械能守恒定律有mAgh=eq \f(1,2)mAv12,解得v1=6 m/s
滑块A与B碰撞的过程,A、B系统的动量守恒,碰撞结束瞬间具有共同速度,设为v2,由动量守恒定律有
mAv1=(mA+mB)v2,
解得v2=eq \f(1,3)v1=2 m/s
(2)滑块A、B发生碰撞后与滑块C一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A、B、C速度相等,设为v3,由动量守恒定律有
mAv1=(mA+mB+mC)v3,
解得v3=eq \f(1,6)v1=1 m/s
由机械能守恒定律有
Ep=eq \f(1,2)(mA+mB)v22-eq \f(1,2)(mA+mB+mC)v32
解得Ep=3 J
(3)被压缩弹簧再次恢复自然长度时,滑块C脱离弹簧,设滑块A、B的速度为v4,滑块C的速度为v5,由动量守恒定律和机械能守恒定律有
(mA+mB)v2=(mA+mB)v4+mCv5
eq \f(1,2)(mA+mB)v22=eq \f(1,2)(mA+mB)v42+eq \f(1,2)mCv52
解得v4=0,v5=2 m/s
滑块C从桌面边缘飞出后做平抛运动s=v5t,H=eq \f(1,2)gt2
解得s=2 m.
“滑块—斜(曲)面”模型
1.模型图示
2.模型特点
(1)最高点:m与M具有共同水平速度v共,m不会从此处或提前偏离轨道.系统水平方向动量守恒,mv0=(M+m)v共;系统机械能守恒,eq \f(1,2)mv02=eq \f(1,2)(M+m)v共2+mgh,其中h为滑块上升的最大高度,不一定等于圆弧轨道的高度(完全非弹性碰撞拓展模型)
(2)最低点:m与M分离点.水平方向动量守恒,mv0=mv1+Mv2;系统机械能守恒,eq \f(1,2)mv02=eq \f(1,2)mv12+eq \f(1,2)Mv22 (完全弹性碰撞拓展模型)
例4 (多选)如图5所示,质量为M的楔形物体静止在光滑的水平地面上,其斜面光滑且足够长,与水平方向的夹角为θ.一个质量为m的小物块从斜面底端以初速度v0沿斜面向上开始运动.当小物块沿斜面向上运动到最高点时,速度大小为v,距地面高度为h,重力加速度为g,则下列关系式中正确的是( )
图5
A.mv0=(m+M)v
B.mv0cs θ=(m+M)v
C.mgh=eq \f(1,2)m(v0sin θ)2
D.mgh+eq \f(1,2)(m+M)v2=eq \f(1,2)mv02
答案 BD
解析 小物块上升到最高点时,小物块相对楔形物体静止,所以小物块与楔形物体的速度都为v,二者组成的系统在水平方向上动量守恒,全过程机械能守恒.以水平向右为正方向,在小物块上升过程中,由水平方向系统动量守恒得mv0cs θ=(m+M)v,故A错误,B正确;系统机械能守恒,由机械能守恒定律得mgh+eq \f(1,2)(m+M)v2=eq \f(1,2)mv02,故C错误,D正确.
例5 (2019·江西师范大学附属中学模拟)如图6所示,形状完全相同的光滑弧形槽A、B静止在足够大的光滑水平面上,两弧形槽相对放置,底端与光滑水平面相切,弧形槽的高度为h,弧形槽A的质量为2m,弧形槽B的质量为M.质量为m的小球,从弧形槽A顶端由静止释放,重力加速度为g.
图6
(1)求小球从弧形槽A的顶端滑下后的最大速度大小;
(2)若小球从弧形槽B上滑下后还能追上弧形槽A,求M、m间所满足的关系.
答案 (1)2eq \r(\f(gh,3)) (2)M>3m
解析 (1)小球到达弧形槽A底端时速度最大,设小球到达弧形槽A底端时的速度大小为v1,弧形槽A的速度大小为v2,小球与弧形槽A组成的系统在水平方向动量守恒,以水平向右为正方向,小球下滑过程中,对系统由动量守恒定律得mv1-2mv2=0,
由机械能守恒定律有mgh=eq \f(1,2)mv12+eq \f(1,2)·2mv22
联立解得v1=2eq \r(\f(gh,3)),v2=eq \r(\f(gh,3)).
(2)小球冲上弧形槽B后,上滑到最高点后再返回分离,设分离时小球速度反向,大小为v3,弧形槽B的速度为v4,整个过程二者水平方向动量守恒,
则有mv1=-mv3+Mv4,
二者的机械能守恒,则有
eq \f(1,2)mv12=eq \f(1,2)mv32+eq \f(1,2)Mv42,
联立解得v3=eq \f(M-m,M+m)v1
小球还能追上A,则有v3>v2
解得M>3m.
3.(“滑块—斜面”模型分析)如图7所示,在足够长的光滑水平面上有一静止的质量为M的斜面,斜面表面光滑、高度为h、倾角为θ.一质量为m(m
相关试卷
这是一份高考物理一轮复习讲义第7章 专题强化11 碰撞模型的拓展(含解析),共11页。
这是一份新高考物理一轮复习讲义 第7章 专题强化10 碰撞模型的拓展(2份打包,原卷版+教师版),文件包含新高考物理一轮复习讲义第7章专题强化10碰撞模型的拓展教师版doc、新高考物理一轮复习讲义第7章专题强化10碰撞模型的拓展原卷版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份高考物理一轮复习课时练习 第7章第3练 专题强化:碰撞模型及拓展(含详解),共8页。试卷主要包含了1 m/s B.0,2 m/s等内容,欢迎下载使用。