终身会员
搜索
    上传资料 赚现金
    专题05 一元一次不等式(组)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题05 一元一次不等式(组)及其应用(原卷版) .doc
    • 解析
      专题05 一元一次不等式(组)及其应用(解析版) .doc
    专题05 一元一次不等式(组)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)01
    专题05 一元一次不等式(组)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)02
    专题05 一元一次不等式(组)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)01
    专题05 一元一次不等式(组)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)02
    专题05 一元一次不等式(组)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)03
    还剩2页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题05 一元一次不等式(组)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)

    展开
    这是一份专题05 一元一次不等式(组)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题05一元一次不等式组及其应用原卷版doc、专题05一元一次不等式组及其应用解析版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    一、选择题
    1. (2024江苏苏州)若,则下列结论一定正确的是( )
    A. B. C. D.
    【答案】D
    【解析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.
    直接利用不等式的性质逐一判断即可.
    【详解】解:,
    A、,故错误,该选项不合题意;
    B、,故错误,该选项不合题意;
    C、无法得出,故错误,该选项不合题意;
    D、,故正确,该选项符合题意;
    故选:D.
    2. (2024河北省)下列数中,能使不等式成立的x的值为( )
    A. 1B. 2C. 3D. 4
    【答案】A
    【解析】本题考查了解不等式,不等式的解,熟练掌握解不等式是解题的关键.解不等式,得到,以此判断即可.
    ∵,
    ∴.
    ∴符合题意的是A
    故选A.
    3. (2024河南省)下列不等式中,与组成的不等式组无解的是( )
    A. B. C. D.
    【答案】A
    【解析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.
    【详解】根据题意,可得,
    A、此不等式组无解,符合题意;
    B、此不等式组解集为,不符合题意;
    C、此不等式组解集为,不符合题意;
    D、此不等式组解集为,不符合题意;
    故选:A
    4. (2024陕西省)不等式的解集是( )
    A. B. C. D.
    【答案】D
    【解析】本题主要考查解一元一次不等式.通过去括号,移项,合并同类项,未知数系数化为1,即可求解.

    去括号得:,
    移项合并得:,
    解得:,
    故选:D.
    5. (2024贵州省)不等式的解集在数轴上的表示,正确的是( )
    A. B. C. D.
    【答案】C
    【解析】根据小于向左,无等号为空心圆圈,即可得出答案.
    本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键.
    【详解】不等式的解集在数轴上的表示如下:

    故选:C.
    6. (2024湖北省)不等式的解集在数轴上表示为( )
    A. B.
    C. D.
    【答案】A
    【解析】本题考查了一元一次不等式的解法及在数轴上表示不等式的解集.根据一元一次不等式的性质解出未知数的取值范围,在数轴上表示即可求出答案.
    【详解】解:,

    在数轴上表示如图所示:

    故选:A.
    7. (2024四川眉山)不等式组的解集是( )
    A. B. C. 或D.
    【答案】D
    【解析】本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    【详解】,
    解不等式①,得,
    解不等式②,得,
    故不等式组的解集为.
    故选:D.
    8. (2024内蒙古赤峰)解不等式组时,不等式①和不等式②的解集在数轴上表示正确的是( )
    A. B.
    C. D.
    【答案】C
    【解析】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,先求出不等式组的解集,再在数轴上表示出不等式组的解集即可.
    解不等式①得,,
    解不等式②得,,
    所以,不等式组的解集为:,
    在数轴上表示为:
    故选:C.
    9. (2024四川遂宁)不等式组的解集在数轴上表示为( )
    A. B. C. D.
    【答案】B
    【解析】本题考查了在数轴上表示不等式组的解集,先求出不等式组的解集,再根据解集在数轴上表示出来即可判断求解,正确求出一元一次不等式组的解集是解题的关键.
    【详解】,
    由得,,
    由得,,
    ∴不等式组的解集为,
    ∴不等式组的解集在数轴上表示为,
    故选:.
    10. (2024安徽省)已知实数a,b满足,,则下列判断正确的是( )
    A. B.
    C. D.
    【答案】C
    【解析】题目主要考查不等式的性质和解一元一次不等式组,根据等量代换及不等式的性质依次判断即可得出结果,熟练掌握不等式的性质是解题关键
    【详解】∵,
    ∴,
    ∵,
    ∴,
    ∴,选项B错误,不符合题意;
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,选项A错误,不符合题意;
    ∵,,
    ∴,,
    ∴,选项C正确,符合题意;
    ∵,,
    ∴,,
    ∴,选项D错误,不符合题意;
    故选:C
    二、填空题
    1. (2024福建省)不等式的解集是______.
    【答案】
    【解析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解.



    故答案为:.
    2. (2024广西)不等式的解集为______.
    【答案】
    【解析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.
    【详解】解:移项得,,
    合并同类项得,,
    系数化为得,,
    故答案为:.
    3. (2024山东烟台)关于的不等式有正数解,的值可以是______(写出一个即可).
    【答案】(答案不唯一)
    【解析】本题考查了一元一次不等式的求解,先求出不等式的解集,根据不等式有正数解可得关于的一元一次不等式,即可求出的取值范围,进而可得的值,求出的取值范围是解题的关键.
    【详解】解:不等式移项合并同类项得,,
    系数化为得,,
    ∵不等式有正数解,
    ∴,
    解得,
    ∴的值可以是,
    故答案为:.
    4. (2024吉林省)不等式组的解集为______.
    【答案】##
    【解析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.
    【详解】
    解不等式①得:,
    解不等式②得:,
    ∴原不等式组的解集为,
    故答案为:.
    5. (2024山东枣庄)写出满足不等式组的一个整数解________.
    【答案】(答案不唯一)
    【解析】本题考查一元一次不等式组解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为,然后即可得出整数解.
    【详解】解:,
    由①得:,
    由②得:,
    ∴不等式组的解集为:,
    ∴不等式组的一个整数解为:;
    故答案为:(答案不唯一).
    6. (2024重庆市B)若关于的一元一次不等式组的解集为,且关于的分式方程的解均为负整数,则所有满足条件的整数的值之和是________.
    【答案】
    【解析】本题主要考查了根据分式方程解的情况求参数,根据不等式组的解集求参数,先解不等式组中的两个不等式,再根据不等式组的解集求出;解分式方程得到,再由关于的分式方程的解均为负整数,推出且且a是偶数,则且且a是偶数,据此确定符合题意的a的值,最后求和即可.
    【详解】
    解不等式①得:,
    解不等式②得: ,
    ∵不等式组的解集为,
    ∴,
    ∴;
    解分式方程得,
    ∵关于的分式方程的解均为负整数,
    ∴且是整数且,
    ∴且且a是偶数,
    ∴且且a是偶数,
    ∴满足题意的a的值可以为4或8,
    ∴所有满足条件的整数a的值之和是.
    故答案为:.
    三、解答题
    1. (2024江苏盐城)求不等式的正整数解.
    【答案】,.
    【解析】本题考查了求一元一次不等式的解集以及正整数解,先求出不等式的解集,进而可得到不等式的正整数解,正确求出一元一次不等式的解集是解题的关键.
    【详解】去分母得,,
    去括号得,,
    移项得,,
    合并同类项得,,
    系数化为得,,
    ∴不等式的正整数解为,.
    2. (2024江苏连云港)解不等式,并把解集在数轴上表示出来.
    【答案】,图见解析
    【解析】本题主要考查解一元一次不等式以及在数轴上表示不等式的解集,根据去分母,去括号,移项,合并同类项可得不等式的解集,然后再在数轴上表示出它的解集即可.
    【详解】,
    去分母,得,
    去括号,得,
    移项,得,
    解得.
    这个不等式的解集在数轴上表示如下:

    3. (2024四川眉山)解不等式:,把它的解集表示在数轴上.
    【答案】,见解析
    【解析】本题考查求不等式的解集,并在数轴上表示解集,去分母,去括号,移项,合并,系数化1,求出不等式的解集,然后在数轴上表示出解集即可.
    【详解】,





    其解集在数轴上表示如下:
    4. (2024北京市)解不等式组:
    【答案】
    【解析】先求出每一个不等式的解集,再根据不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解”确定不等式组的解集.
    本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键.
    【详解】
    解不等式①,得,
    解不等式②,得,
    ∴不等式组的解集为.
    5. (2024甘肃临夏)解不等式组:.
    【答案】
    【解析】分别求出不等式组中两不等式解集,找出两解集的方法部分即可.
    解不等式,得,
    解不等式,得,
    所以不等式组的解集是
    【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    6. (2024武汉市)求不等式组的整数解.
    【答案】整数解为:
    【解析】本题考查了解一元一次不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而求得整数解.
    【详解】
    解不等式①得:
    解不等式②得:
    ∴不等式组的解集为:,
    ∴整数解为:
    7. (2024江苏扬州)解不等式组,并求出它所有整数解的和.
    【答案】,整数和为6
    【解析】本题主要考查解不等式组的整数解,掌握不等式的性质,不等式组的取值方法是解题的关键.
    根据不等式的性质分别求出不等式①,②的解,再根据不等式组的取值方法“同大取大,同小取小,大小小大取中间,大大小小无解”即可求解,结合解集取整数,再求和即可.
    【详解】,
    由①得,,
    解得,;
    由②得,,
    移项得,,
    解得,,
    ∴原不等式组的解为:,
    ∴所有整数解为:,
    ∴所有整数解的和为:.
    8. (2024天津市)解不等式组
    请结合题意填空,完成本题的解答.
    (1)解不等式①,得______;
    (2)解不等式②,得______;
    (3)把不等式①和②的解集在数轴上表示出来:
    (4)原不等式组的解集为______.
    【答案】(1)
    (2)
    (3)见解析 (4)
    【解析】【分析】本题考查的是解一元一次不等式,解一元一次不等式组;
    (1)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;
    (2)根据解一元一次不等式基本步骤:移项、合并同类项、化系数为1可得出答案;
    (3)根据前两问的结果,在数轴上表示不等式的解集;
    (4)根据数轴上的解集取公共部分即可.
    【小问1详解】
    解:解不等式①得,
    故答案:;
    【小问2详解】
    解:解不等式②得,
    故答案为:;
    【小问3详解】
    解:在数轴上表示如下:
    【小问4详解】
    解:由数轴可得原不等式组的解集为,
    故答案为:.
    相关试卷

    专题28 概率-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版): 这是一份专题28 概率-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题28概率原卷版doc、专题28概率解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    专题27 统计-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版): 这是一份专题27 统计-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题27统计原卷版doc、专题27统计解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    专题20 圆-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版): 这是一份专题20 圆-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题20圆原卷版doc、专题20圆解析版doc等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题05 一元一次不等式(组)及其应用-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map