年终活动
搜索
    上传资料 赚现金

    专题28 概率-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题28 概率(原卷版) .doc
    • 解析
      专题28 概率(解析版) .doc
    专题28 概率(原卷版) 第1页
    专题28 概率(原卷版) 第2页
    专题28 概率(原卷版) 第3页
    专题28 概率(解析版) 第1页
    专题28 概率(解析版) 第2页
    专题28 概率(解析版) 第3页
    还剩6页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题28 概率-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版)

    展开

    这是一份专题28 概率-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题28概率原卷版doc、专题28概率解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
    一、选择题
    1. (2024武汉市)小美和小好同学做“石头、剪刀、布”的游戏,两人同时出相同的手势,这个事件是( )
    A. 随机事件B. 不可能事件C. 必然事件D. 确定性事件
    2. (2024湖北省)下列各事件是,是必然事件的是( )
    A. 掷一枚正方体骰子,正面朝上恰好是3B. 某同学投篮球,一定投不中
    C. 经过红绿灯路口时,一定是红灯D. 画一个三角形,其内角和为
    3. (2024四川内江)下列事件是必然事件的是( )
    A. 打开电视机,中央台正在播放“嫦娥六号完成人类首次背月采样”的新闻
    B 从两个班级中任选三名学生担任学校安全督查员,至少有两名学生来自同一个班级
    C. 小明在内江平台一定能抢到龙舟节开幕式门票
    D. 从《西游记》《红楼梦》《三国演义》《水浒传》这四本书中随机抽取一本是《三国演义》
    4. (2024江苏连云港)下列说法正确的是( )
    A. 10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大
    B. 从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大
    C. 小强一次掷出3颗质地均匀骰子,3颗全是6点朝上是随机事件
    D. 抛一枚质地均匀的硬币,正面朝上的概率为,连续抛此硬币2次必有1次正面朝上
    5. (2024贵州省)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )
    A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中
    C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次
    6. (2024深圳)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )
    A. B. C. D.
    7. (2024广西)不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是( )
    A. 1B. C. D.
    8. (2024武汉市)经过某十字路口的汽车,可能直行,也可能向左转或向右转,这三种可能性大小相同.若两辆汽车经过这个十字路口,则至少一辆车向右转的概率是( )
    A. B. C. D.
    9. (2024河南省)豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )
    A. B. C. D.
    10. (2024黑龙江齐齐哈尔)六月份,在“阳光大课间”活动中,某校设计了“篮球、足球、排球、羽毛球”四种球类运动项目,且每名学生在一个大课间只能选择参加一种运动项目,则甲、乙两名学生在一个大课间参加同种球类运动项目的概率是( )
    A. B. C. D.
    11. (2024北京市)不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )
    A. B. C. D.
    12. (2024福建省)哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是( )
    A. B. C. D.
    13. (2024山东威海)如图,在扇形中,,点是的中点.过点作交于点,过点作,垂足为点.在扇形内随机选取一点,则点落在阴影部分的概率是( )
    A. B. C. D.
    二、填空题
    1. (2024湖北省)中国古代杰出的数学家祖冲之、刘徽、赵爽、秦九韶、杨辉,从中任选一个,恰好是赵爽的概率是______.
    2. (2024天津市)不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为______.
    3. (2024重庆市B)甲、乙两人分别从A、B、C三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.
    4. (2024湖南省)有四枚材质、大小、背面图案完全相同的中国象棋棋子“”“”“”“”,将它们背面朝上任意放置,从中随机翻开一枚,恰好翻到棋子“”的概率是________.
    5. (2024四川达州)“四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是______.
    6. (2024四川泸州)在一个不透明的盒子中装有6个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为______.
    7. (2024上海市)一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是,则袋子中至少有___________个绿球.
    8. (2024四川成都市)盒中有枚黑棋和枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是,则的值为______.
    9. (2024江苏苏州)如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是______.
    10. (2024江苏扬州)某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如表:
    随着实验次数的增大,“盖面朝上”的概率接近于__________(精确到0.01).
    三、解答题
    1. (2024吉林省)吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.
    2. (2024河北省)甲、乙、丙三张卡片正面分别写有,除正面的代数式不同外,其余均相同.
    (1)将三张卡片背面向上并洗匀,从中随机抽取一张,当时,求取出的卡片上代数式的值为负数的概率;
    (2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.
    3. (2024江苏苏州) 一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.
    (1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;
    (2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)
    4. (2024甘肃威武)在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.
    (1)请用画树状图或列表的方法,求甲获胜的概率.
    (2)这个游戏规则对甲乙双方公平吗?请说明理由.
    5. (2024甘肃临夏)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了,,,四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.
    (1)小临从四张卡片中随机抽取一张,抽中卡片的概率是______;
    (2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.
    6. (2024贵州省)根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:
    男生成绩:7.61,7.38,7.65,7.38,7.38
    女生成绩:8.23,8.27,8.16,8.26,8.32
    根据以上信息,解答下列问题:
    (1)男生成绩众数为______,女生成绩的中位数为______;
    (2)判断下列两位同学的说法是否正确.
    (3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.
    7. (2024黑龙江绥化)为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.

    请根据统计图中的信息,解答下列问题:
    (1)参加本次问卷调查的学生共有______人.
    (2)在扇形统计图中,A组所占的百分比是______,并补全条形统计图.
    (3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.
    8. (2024江苏盐城)在“重走建军路,致敬新四军”红色研学活动中,学校建议间学们利用周末时间自主到以下三个基地开展研学活动.
    A.新四军纪念馆(主馆区);
    B.新四军重建军部旧址(泰山庙):
    C.新四军重建军部纪念塔(大铜马),
    小明和小丽各自随机选择一个基地作为本次研学活动的第一站.
    (1)小明选择基地A的概率为________:
    (2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.
    9. (2024内蒙古赤峰)某校田径队为了调动队员体育训练的积极性,计划根据成绩情况对队员进行奖励.为确定一个适当的成绩目标,进行了体育成绩测试,统计了每个队员的成绩,数据如下:
    整理、描述数据
    分析数据样本数据的平均数、众数、中位数如下表:
    解决问题
    (1)表格中的______;______;______;
    (2)分析平均数、众数、中位数这三个数据,如果想让一半左右的队员都能达到成绩目标,你认为成绩目标应定为______分,如果想确定一个较高的成绩目标,这个成绩目标应定为______分;
    (3)学校要从91分的A,B,C,D四名队员中,随机抽取两名队员去市里参加系统培训.请利用画树状图法或列表法,求A,B两名队员恰好同时被选中的概率.
    10. (2024山东烟台)“山海同行,舰回烟台”.2024年4月23日,烟台舰与家乡人民共庆人民海军成立75周年.值此,某学校开展了“奋进万亿新征程,共筑强国强军梦”的主题研学活动,为了解学生参与情况,随机抽取部分学生对研学活动时长(用t表示,单位:h)进行调查.经过整理,将数据分成四组(A组:;B组:;C组:;D组:),并绘制了如下不完整的条形统计图和扇形统计图.
    (1)请补全条形统计图;
    (2)扇形统计图中,a的值为_____,D组对应的扇形圆心角的度数为______;
    (3)D组中有男、女生各两人,现从这四人中随机抽取两人进行研学宣讲,请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.
    11. (2024四川达州)2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:
    请根据表中提供的信息.解答下列问题:
    (1)此次调查共抽取了______名选手,______,______;
    (2)扇形统计图中,等级所对应的扇形圆心角度数是______度;
    (3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.
    12. (2024四川眉山)为响应国家政策,保障耕地面积,提高粮食产量,确保粮食安全,我市开展高标准农田改造建设,调查统计了其中四台不同型号挖掘机(分别为型,型,型,型)一个月内改造建设高标准农田的面积(亩),并绘制成如图不完整的统计图表:
    改造农田面积统计表

    利用图中的信息,解决下列问题:
    (1)①______;
    ②扇形统计图中的度数为______.
    (2)若这四台不同型号的挖掘机共改造建设了960亩高标准农田,估计其中型挖掘机改造建设了多少亩?
    (3)若从这四台不同型号的挖掘机中随机抽调两台挖掘机参加其它任务,请用画树状图或列表的方法求出恰好同时抽到,两种型号挖掘机的概率.
    累计抛掷次数
    50
    100
    200
    300
    500
    1000
    2000
    3000
    5000
    盖面朝上次数
    28
    54
    106
    158
    264
    527
    1056
    1587
    2650
    盖面朝上频率
    0.5600
    0.5400
    0.5300
    0.5267
    0.5280
    0.5270
    0.5280
    0.5290
    0.530
    收集数据
    77
    78
    76
    72
    84
    75
    91
    85
    78
    79
    82
    78
    76
    79
    91
    91
    76
    74
    75
    85
    75
    91
    80
    77
    75
    75
    87
    85
    76
    77
    成绩/分
    72
    74
    75
    76
    77
    78
    79
    80
    82
    84
    85
    87
    91
    人数/人
    1
    1
    a
    4
    3
    3
    b
    1
    1
    1
    3
    1
    4
    平均数
    众数
    中位数
    80
    c
    78
    等级
    分数段
    频数
    m
    型号
    亩数
    16
    20
    12

    相关试卷

    专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版):

    这是一份专题32 最值问题-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题32最值问题原卷版doc、专题32最值问题解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    专题27 统计-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版):

    这是一份专题27 统计-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题27统计原卷版doc、专题27统计解析版doc等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    专题26 投影与视图-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版):

    这是一份专题26 投影与视图-【真题汇编】2024年中考数学真题专题分类汇编练习(原卷版+解析版),文件包含专题26投影与视图原卷版doc、专题26投影与视图解析版doc等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map