终身会员
搜索
    上传资料 赚现金

    2025年中考数学二轮专题复习讲义第25讲 已知角度为定值求动点坐标(含解析)

    立即下载
    加入资料篮
    2025年中考数学二轮专题复习讲义第25讲  已知角度为定值求动点坐标(含解析)第1页
    2025年中考数学二轮专题复习讲义第25讲  已知角度为定值求动点坐标(含解析)第2页
    2025年中考数学二轮专题复习讲义第25讲  已知角度为定值求动点坐标(含解析)第3页
    还剩12页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025年中考数学二轮专题复习讲义第25讲 已知角度为定值求动点坐标(含解析)

    展开

    这是一份2025年中考数学二轮专题复习讲义第25讲 已知角度为定值求动点坐标(含解析),共15页。学案主要包含了解法提示,思路点拨等内容,欢迎下载使用。
    1.如图,在平面直角坐标系中,点A 的坐标为( 2m−1mm0),过点 A作 AB⊥x轴于点 B.
    (1)若 ∠AOB=30°,,求m的值;
    (2)若. ∠AOB=60°,,求m的值.
    2.如图,在平面直角坐标系中,直线 l1:y=13x+1分别交x轴,y轴于点A,B,直线 l2:y=12x+t与x轴交于点C,与直线 l₁交于点D,P是x轴上的一点,且. BP=DP.若 ∠BPD=90°,求t的值.
    3.如图,抛物线 y=−14x2+32x+4与x轴交于A,B两点(点A在点B 左侧),与y轴交于点 C,点 P 是抛物线上一点,若 ∠APB= 45°,,求点 P的坐标(点 P 的横、纵坐标均为整数).
    4.如图,抛物线 y=−x²+2x+8与x轴交于A,B两点(点A在点B左侧),点 P是抛物线的对称轴上一点,若 ∠APB=150°,求点 P的坐标.
    5.如图,在平面直角坐标系中,直线 y=−x+2与x轴交于点A,与y轴交于点 B,点P为x轴上一点,若 ∠PBA=15°,,求点 P的坐标.
    6.如图,在平面直角坐标系中,直线. y=−x+2与x轴交于点A,与y轴交于点B,点Q为y轴上一点,若 ∠QAB=75°,,求点Q的坐标.
    二阶 设问进阶练
    例 如图,抛物线 y=−x²+2x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点 C.
    (1)若点 F是抛物线对称轴上一点,当 ∠AFC=90°时,求点 F的坐标;
    (2)若点N为抛物线上一点,当 ∠NBA=30°时,求点N的横坐标;
    (3)若点P为抛物线对称轴上一点,当 ∠APC=45°时,求点 P的坐标;
    (4)如图④,连接AC,BC,点 D 在线段AC上(不与点 A,C重合)且 tan∠BDC=3,,求点 D的坐标;
    (5)如图⑤,已知点Q(0,1),连接BQ,抛物线上是否存在点M,使得 tan∠MBQ=12?若存在,求出点M的坐标;若不存在,请说明理由;
    (6)创新题·定角求平移距离 如图⑥,将抛物线向下平移m个单位,交BC于点E,R,若 ∠EOR=45°,求m的值.
    阶 综合强化练
    1.如图①,在平面直角坐标系xOy中,抛物线 y=x²−1的顶点为P,A,B为抛物线上两点,且线段
    AB‖x轴,过点A作 AD⊥x轴于点 D,过点 B 作. BC⊥x轴于点 C,连接BP,PD,BD.
    (1)求证: ∠BPD=90°;
    (2)创新题·猜想角度定值条件 小樱证明完(1)中的 ∠BPD为 90°后,她猜想:所有抛物线
    中的“ ∠BPD,都为 90°,,为验证她的猜想,她提出如下问题:如图①,抛物线 y=ax²+c中字母
    a,c满足什么条件才能使 ∠BPD=90°..请回答小樱的问题并说明理由;
    (3)如图②,抛物线 y'=ax²+bx+c中字母a,b,c满足什么条件才能使. ∠BPD=90°.请直接写出
    结论.
    作图区 答题区
    2.如图,抛物线 y=ax²−3x+ca≠0与x轴交于A(4,0),C两点,交y轴于点. B0−4,点P为y轴右侧抛物线上一个动点.
    (1)求抛物线的解析式;
    (2)过点B作. BD‖x轴,过点 P作 PD⊥BD于点D,且. BP=5PD,求点P 的坐标;
    (3)(三角函数值确定)当点F为AB的中点,且 tan∠FCP=12时,求点 P 的横坐标.
    作图区 答题区
    3.在平面直角坐标系中,抛物线 y=ax+1x−3a≠0)与x轴交于A,B 两点(点A在点 B左
    侧),与y轴交于点 C(0,3),点 D为抛物线的顶点,点P 是抛物线的对称轴上一点.
    (1)求抛物线的解析式及点 D 的坐标;
    (2)如图①,连接PB,PD,求 PB+22PD的最小值;
    (3)(特殊角+定边)如图②,连接CP,PB,BC,若 ∠CPB=135°,,求点 P的坐标.
    作图区 答题区
    考向 1 已知角度为定值求动点坐标
    一阶 方法突破练
    1. 解:(1)∵∠AOB=30°,A(2m-1,m),AB⊥x轴,∴OB=2m-1,AB=m,△AOB是直角三角形,∴OA=2m,
    由勾股定理得, OB²+AB²=OA²,
    ∴2m−1²+m²=2m²,
    解得 m=2+3或 m=2−3;
    (2)∵∠AOB=60°,A(2m-1,m),AB⊥x轴,∴OB=2m-1,AB=m,△AOB是直角三角形,∴OA=4m-2,
    由勾股定理得, m²+2m−1²=4m−2²,解得 m=6+311或 m=6−311.
    2. 解:如解图,过点 D作DE⊥x轴于点E,设点坐标,表示出线段长.
    设P(m,0),D(xD,yD),
    由题意得 yD=13xb+1yv=12xb+t,解得 xD=6−6tyD=3−2t,
    ∴D(6-6t,3-2t),E(6-6t,0),
    ∵B(0,1),P(m,0),
    ∴OB=1,PE=|6-6t-ml,OP=|ml,DE=|3-2t|,
    ∵∠BPD=90°,
    ∴∠BPO+∠DPE=90°,∠BPO+∠PBO=90°,
    ∴∠DPE=∠PBO,
    ∵ ∠BOP = ∠PED = 90°,BP=PD,
    ∴△PBO≌△DPE(AAS),利用全等关系式求未知数.
    ∴BO=PE=|6-6t-m|=1,OP=DE=|m|=|3-2t|,当m=3-2t时,|6-6t-3+2t|=|3-4t|=1,解得 t=12或t=1(点B,D重合,舍去),当m=-(3-2t)时,|6-6t+3-2t|=|9-8t|=1,解得 t=54或t=1(舍去),
    综上所述, t=12或 t=54.
    3.解:根据已知条件构造辅助圆,以AB 为斜边作等腰Rt△AGB,则AG=BG,∠AGB=90°,以点G为圆心,AG长为半径画圆,则点 P 在优弧AB上时总有∠APB=45°,
    分两种情况讨论,如解图①,若点 G在x轴上方时,⊙G 与抛物线的交点只有 A,B,即没有点 P 使∠APB=45°;
    如解图②,若点 G在x轴下方时,过点 G 作 GM⊥x轴于点 M,连接PG.
    ∵抛物线的解析式为 y=−14x2+32x+4,
    ∴令y=0,得 −14x2+32x+4=0,解得 x₁=−2,x₂=8,
    ∴A(-2,0),B(8,0),∴AB=10.
    ∵AM=BM=GM=12AB=5,∴G3−5.
    设 Pp−14p2+32p+4,
    ∵PG=AG=22AB=52,
    ∴PG²=50,即 p−32+−14p2+32p+4+52=50,
    ∵ 点 P的横纵坐标均为整数,
    ∴有 p−32=1,−14p2+32p+4+52=49,此时无解,
    或 p−32=25,−14p2+32p+4+52=25,
    解得 p₁=−2,p₂=8,此时两点为A,B两点,舍去,
    或 p−32=49,−14p2+32p+4+52=1
    解得 p₃=−4,p₄=10,
    当p=-4或p=10时, −14p2+32p+4=−6.
    综上所述,符合条件的点P的坐标为(-4,-6)或(10,-6).
    4.解:由题意得,抛物线的对称轴为直线 x=−b2a=1,令 −x²+2x+8=0,解得x=-2或x=4,
    ∵点A 在点 B左侧,∴A(-2,0),B(4,0),
    ∴AB=6,
    ∵∠APB=150°,点P在抛物线的对称轴上,
    150°角的补角的2倍是60°角,可以以AB为边作等边三角形找圆心,构造辅助圆.
    ∴分两种情况讨论:
    ①当点 P在x轴下方时,如解图,以AB为边在AB上方构造等边△AEB,设抛物线对称轴与x轴交于点D,以点 E为圆心,AB长为半径构造⊙E,则⊙E 与抛物线对称轴在x轴下方的交点即为点 P,
    ∵ AB=6,∠EAB=60°,
    ∴ ⊙E 的半径为 6,ED =AE·sin∠EAB=3 3,
    ∴DP=EP-ED=6-3 3,
    ∴点P的坐标为(1,3 3-6);
    ②当点 P 在 x 轴上方时,利用对称性可知,点 P 的坐标为 16−33,
    综上所述,点P的坐标为( 133−6或 16−33.
    5. 解:∵直线y=-x+2 与x轴交于点 A,与y轴交于点 B,
    ∴A(2,0),B(0,2),∴OA=OB=2,∴∠OBA=45°,分两种情况讨论:
    如解图,当点 P在点 A 左侧,即P₁处时,
    ∵∠P₁BA=15°,
    ∴∠OBP₁=∠OBA−∠P₁BA=30°,
    ∴OP1=OB⋅tan∠OBP1=233,
    ∴点 P₁ 的坐标为 2330;当点 P 在点 A 右侧,即P₂处时,
    ∵∠P₂BA=15°,
    ∴∠OBP₂=∠OBA+∠P₂BA=60°,
    ∴OP2=OB⋅tan∠OBP2=23,
    ∴点P₂的坐标为(2 3,0),
    综上所述,点P的坐标为 2330或(2 3,0).
    6. 解:如解图,∵ 直线y=-x+2 与x轴交于点A,与y轴交于点B,∴A(2,0),B(0,2),
    ∴OA=OB=2,∴∠OAB=45°.将非特殊角转化为特殊角
    ∵∠QAB=75°>45°,
    ∴点 Q 只能在y轴负半轴.
    ∵ ∠QAB=75°,
    ∴∠QAO=∠QAB-∠OAB=30°,
    ∴OQ=OA⋅tan∠QAO=233,
    ∴ 点Q 的坐标为 0−233.
    二阶 设问进阶练
    例 解:(1)∵抛物线与x轴交于A,B两点,与y轴交于点C,
    令x=0,得y=3,令y=0,解得: x₁=−1,x₂=3,
    ∴A(-1,0),B(3,0),C(0,3),
    :y=−x²+2x+3=−x−1²+4,
    ∴抛物线的对称轴为直线x=1,
    设点 F的坐标为(1,f),
    则 CF²=1²+f−3²,AF²=2²+f²,AC²=1²+3²=10,
    ∵∠AFC=90°,
    ∴AF²+CF²=AC²,即 2²+f²+1²+f−3²=10,解得f=1或f=2,
    ∴当∠AFC=90°时,点F的坐标为(1,1)或(1,2);
    (2)①当点 N在x轴上方时,如解图①,设BN与y轴交于点 K,
    ∵B(3,0),∴OB=3,∵∠NBA=30°,
    ∴OK=33OB=3,∴K03,
    ∴直线 BN的解析式为 y=−33x+3,联立直线 BN 和抛物线的解析式得 33x+3=−x2+2x+3,解得 x = 3(舍去) 或 x = −1+33,
    ∴ 点 N的横坐标为 −1+33;
    ②当点 N 在x轴下方时,
    同理可得,点 N的横坐标为 −1−33.
    综上所述,点N的横坐标为 −1+33g −1−33;
    (3)如解图②,连接AC,取AC 的中点S,过点 S作SE⊥AC交抛物线对称轴于点 E,连接AE,CE,
    ∵A(-1,0),C(0,3),
    ∴ 直线 AC的解析式为y=3x+3.
    ∵S为AC的中点,SE⊥AC,
    ∴s(- 12 32,),CE=AE.
    设直线SE的解析式为 y=−13x+d,
    将点 S的坐标代入,得 −13×−12+d=32,
    解得 d=43,
    ∴直线SE的解析式为 y=−13x+43,
    ∴ 点 E 的坐标为(1,1).
    由(1)可知,∠AEC=90°,
    ∵∠APC=12∠AEC=45∘,
    ∴以点 E 为圆心,AE 长为半径作⊙E,⊙E与抛物线对称轴的交点即为点 P,连接AP,CP,AP',CP',
    ∴AE=EP.
    ∵AC2=10,AC=10,
    ∴AE=22AC=5,
    ∴点 P 的坐标为( 11+5或 11−5;
    (4)如解图③,过点 B 作 BH⊥AC 于点 H,
    则∠BHD=90°,
    ∵ A (-1,0),B(3,0),C(0,3),∴AB=4,AC= 10∵ sin ∠BAH = sin ∠BAC = OCAC=31010,
    ∴BH=AB⋅sin∠BAH=31010×4=6105,
    ∵tan∠BDC=3,∴BHDH=3,
    ∴DH=13BH=13×6105=2105,
    在 Rt△BDH中, BD=BH2+DH2=4,
    由(3)可知直线AC的解析式为y=3x+3,
    设D(t,3t+3),
    ∵B(3,0),
    ∴3−t²+3t+3²=16,
    解得 t1=−15,t2=−1(舍去),
    当 t=−15时, D−15125,
    ∴ 点 D 的坐标为 −15125;
    (5)存在.
    取线段BQ 的中点G,再将QG绕点 Q 旋转90°得到QG',则 tan∠G'BQ=12,直线 BG'与抛物线的交点即为点 M.
    ①如解图④,将QG绕点 Q 顺时针旋转90°,过点 Q作NZ∥x轴,过点 G',B 分别作 G'N⊥NZ 于点 N,BZ⊥NZ 于点 Z,易得△NQG'∽△ZBQ,且相似比为 12.
    由题意得BZ=OQ=1,QZ=OB=3,∴NG'= 12Qz= 32,QN=12BZ=12,. 点 G'的坐标为 −12−12,又∵ B(3,0),∴ 直线 BG'的解析式为 y=17x−37,联立 y=17x−37y=−x2+2x+3,解得 x=−87y=2949 x=3y=0舍去), ∴M−87−2949;
    ②如解图⑤,将线段 QG 绕点 Q 逆时针旋转90°得到 QG",过点 G"作G"L⊥CQ 于点 L,
    同理,可得点 G''1252,
    ∴ 直线 BG"的解析式为y=-x+3.
    联立 y=−x+3y=−x2+2x+3,解得 x=0y=3艺 x=3y=0(舍去),∴点M(0,3).
    综上所述,点M的坐标为 −87−2949或(0,3);
    (6)如解图⑥,将△OCE 绕点 O 顺时针旋转90°得到△OBS,连接RS,
    ∵OB=OC=3,
    ∴∠OCB=∠OBC=45°,
    ∵∠EOR=45°,
    ∴∠EOC+∠ROB=∠SOB+∠ROB=45°,
    ∴∠EOR=∠SOR=45°,
    ∵OR=OR,OE=OS,
    ∴△EOR≌△SOR(SAS),
    ∴ER=RS,
    由旋转性质得, ∠SBO =∠OCB=45°,
    ∵∠RBS=∠RBO+∠SBO= 45°+45°=90°,
    ∴RS²=BR²+BS²,即 ER²= BR²+CE²,
    设E(x₁,y₁),R(x₂,y₂),
    则 ER2=2x2−x12=2x1+x22−4x1x2,
    设平移后的抛物线的解析式为 y=−x²+2x+3−m,
    联立 y=−x+3y=−x2+2x+3−m,得 x²−3x+m=0,
    ∴x1+x2=3x1x2=mx1+y1=3x2+y2=3
    ∴y₁=x₂,y₂=x₁,
    ∴E,R关于直线y=x对称,
    ∴CE=BR,设CE=BR=a,则 ER=32−2a,
    ∴32−2a2=2a2,
    ∴a=32−3或 a=32+3(舍去),
    ∴ER=6−32,
    ∴6−322=232−4m,
    解得 m=922−1.
    三阶 综合强化练
    1. (1)证明:设点D(-m,0),由题意可知A,B两点关于y轴对称,
    ∴A−mm²−1,Bmm²−1,P0−1,
    ∴PB²=m²+m⁴,PD²=m²+1,BD²=4m²+m²−1²,
    ∴BD²=4m²+m²−1²=m⁴+2m²+1=PB²+PD²,
    ∴△BPD是直角三角形,∴∠BPD=90°;
    (2)解:ac=-1;
    理由:∵y=ax²+c,∴P(0,c),
    设点D(-n,0),∴B(n,an²+c),
    ∴PB²=n²+a²n⁴,PD²=n²+c²,BD²=4n²+an²+c²,
    ∵∠BPD=90°,∴BD²=PB²+PD²,
    ∴4n²+an²+c²=n²+a²n⁴+n²+c²,
    ∴2c=-2,
    ∴ac=-1;
    (3)解: 4ac−b²=−4.
    【解法提示】设 y=ax−ℎ²+k,∴P(h,k),设D(h-p,0),则 Aℎ−pap²+k,Bℎ+pap²+k,∴PB²=p²+ a²p⁴,PD²=p²+k²,BD²=4p²+ap²+k²,∴∠BPD= 90°,∴BD²=PB²+PD²,∴4p²+ap²+k²=p²+a²p⁴+ p2+k2,∴ak+1=0,k=−1a,::k=4ac−b24a, ∴4ac−b24a=−1a,∴4ac−b2=−4.
    2. 解:(1)∵抛物线 y=ax²−3x+ca≠0与x轴交于A(4,0),C两点,与y轴交于点B(0,-4),
    ∴将点A(4,0),B(0,-4)代入抛物线解析式,
    得 16a−12+c=0c=−4,解得 a=1c=−4,
    ∴抛物线的解析式为 y=x²−3x−4;
    (2)【思路点拨】点 P 为抛物线上的点,可以设出点P 的坐标,由所给的 BP 与 PD 的关系,分点P 在点D上方和下方两种情况讨论,从而得到点 P的坐标.设点 Pmm²−3m−4m0),
    ∵B(0,-4),∴D(m,-4),
    ∵BP=5PD,∴BD=2PD,
    ①当点 P在点 D 上方时,即 yP>yD,m2−3m−4>−4且m>0,解得m>3,
    PD=m²−3m−4−−4=m²−3m,
    ∴12m=m2−3m,解得m=0(舍去)或 m=72,
    ∴点 P 的坐标为 72−94;
    ②当点 P在点 D下方,即0

    相关学案

    2025中考数学大复习 第09讲 函数与平面直角坐标系(讲义)(解析版):

    这是一份2025中考数学大复习 第09讲 函数与平面直角坐标系(讲义)(解析版),文件包含2025中考大复习第09讲函数与平面直角坐标系讲义解析版docx、2025中考大复习第09讲函数与平面直角坐标系讲义docx等2份学案配套教学资源,其中学案共105页, 欢迎下载使用。

    人教版初一数学上册《几何初步》数轴绝对值动点讲义+练习(无答案):

    这是一份人教版初一数学上册《几何初步》数轴绝对值动点讲义+练习(无答案),共5页。学案主要包含了解决动点问题的思路和方法等内容,欢迎下载使用。

    九年级数学 培优竞赛新方法-第28讲 圆与直角坐标系——由动点生成的相切问题 讲义学案:

    这是一份九年级数学 培优竞赛新方法-第28讲 圆与直角坐标系——由动点生成的相切问题 讲义学案,共6页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map