所属成套资源:北师大版八年级数学上册精品期末专题特训(学生版+解析)
北师大版八年级数学上册专题4.9一次函数章末八大题型总结(拔尖篇)同步练习(学生版+解析)
展开
这是一份北师大版八年级数学上册专题4.9一次函数章末八大题型总结(拔尖篇)同步练习(学生版+解析),共64页。
TOC \ "1-3" \h \u
\l "_Tc32145" 【题型1 根据情景确定函数图象】 PAGEREF _Tc32145 \h 1
\l "_Tc16415" 【题型2 一次函数与三角形的面积综合】 PAGEREF _Tc16415 \h 3
\l "_Tc14335" 【题型3 一次函数与全等三角形】 PAGEREF _Tc14335 \h 4
\l "_Tc11441" 【题型4 一次函数与等腰三角形】 PAGEREF _Tc11441 \h 6
\l "_Tc10453" 【题型5 一次函数与等腰直角三角形】 PAGEREF _Tc10453 \h 8
\l "_Tc6189" 【题型6 一次函数与动点最值问题】 PAGEREF _Tc6189 \h 10
\l "_Tc1933" 【题型7 一次函数的图象的应用】 PAGEREF _Tc1933 \h 12
\l "_Tc1828" 【题型8 一次函数的实际应用】 PAGEREF _Tc1828 \h 14
【题型1 根据情景确定函数图象】
【例1】(2023春·安徽宿州·八年级校考期中)如图所示,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:cm3)表示注入容器内的水量,则表示V与h的函数关系的图象大致是( )
B.
C. D.
【变式1-1】(2023·广西南宁·八年级校考期中)南湖隧道是南宁市建成的首条水底隧道.一辆小汽车匀速通过南湖隧道,小汽车车身在隧道内的长度记为y米,小汽车进入隧道的时间记为t秒,则y与t之间的关系用图象描述大致是( )
B.
C. D.
【变式1-2】(2023·北京怀柔·八年级校考期中)小丽早上从家出发骑车去上学,途中想起忘了带昨天晚上完成的数学作业,于是打电话让妈妈马上从家里送来,同时小丽也往回骑,遇到妈妈后停下说了几句话,接着继续骑车去学校.设小丽从家出发后所用时间为t,小丽与学校的距离为S.下面能反映S与t的函数关系的大致图象是( ).
A.AB.BC.CD.D
【变式1-3】(2023春·北京东城·八年级北京市第二中学分校校考期末)如图所示,一个实心铁球静止在长方体水槽的底部,现向水槽匀速注水,下列图像中能大致反映水槽中水的深度y与注水时间x关系的是( )
A. B.
C. D.
【题型2 一次函数与三角形的面积综合】
【例2】(2023春·四川宜宾·八年级统考期末)如图,在平面直角坐标系中,四边形OABC是平行四边形,四边形ODEC为正方形,点C的坐标是(0,2),点A的坐标是(2,1),若直线l把▱OABC与正方形ODEC组成的图形分成面积相等的两部分,则直线l的解析式是( )
A.y=14x+54B.y=12x+32C.y=−14x+34D.y=−14x+32
【变式2-1】(2023春·广东江门·八年级统考期末)如图,过点A(−2,0)的直线l1:y=kx+b与直线l2:y=−x+1交于P(−1,a).
(1)求直线l1对应的表达式;
(2)求四边形PAOC的面积.
【变式2-2】(2023春·山东济南·八年级校考期中)如图1所示,在△ABC中,AD是三角形的高,且AD=6cm,BC=8cm,点E是BC上的一个动点,由点B向点C运动,其速度与时间的变化关系如图2所示.
(1)由图2知,点E运动的时间为 s,速度为 cm/s,点E停止运动时距离点C cm.
(2)求在点E的运动过程中,△ABE的面积y(cm2)与运动时间x(s)之间的关系是 .
(3)求点E停止运动后,求△ABE的面积.
【变式2-3】(2023春·山西大同·八年级大同市第三中学校校考期末)在平面直角坐标系中,点O为坐标原点,点A的横坐标为a,点A的纵坐标为b,且实数a,b满足a+42+b−6=0.
(1)如图1,求点A的坐标;
(2)如图2,过点A作x轴的垂线,点B为垂足.若将点A向右平移10个单位长度,再向下平移8个单位长度可以得到对应点C,连接CA,CB,请直接写出点B,C的坐标并求出三角形ABC的面积.
(3)在(2)的条件下,记AC与x轴交点为点D,点P在y轴上,连接PB,PD,若三角形PBD的面积与三角形ABC的面积相等,直接写出点P的坐标.
【题型3 一次函数与全等三角形】
【例3】(2023春·陕西咸阳·八年级统考期中)如图,直线l1:y=−2x+6与过点B(0,3)的直线l2交于点C(1,m),且直线l1与x轴交于点A,与y轴交于点D.
(1)求直线l2的函数表达式;
(2)若点M是直线l2上的点,过点M作MN⊥y轴于点N,要使以O、M、N为顶点的三角形与△AOD全等,求所有满足条件的点M的坐标.
【变式3-1】(2023春·河北保定·八年级校联考期中)已知:如图点A(6,8)在正比例函数图象上,点B坐标为(12,0),连接AB,AO=AB=10,点C是线段AB的中点,点P在线段BO上以每秒2个单位的速度由点B向点O运动,点Q在线段AO上由点A向点O运动,P、Q两点同时运动,同时停止,运动时间为t秒.
(1)正比例函数的关系式为 ;
(2)当t=1秒,且SΔOPQ=6时,求点Q的坐标;
(3)连接CP,在点P、Q运动过程中,ΔOPQ与ΔBPC是否全等?如果全等,请求出点Q的运动速度;如果不全等,请说明理由.
【变式3-2】(2023春·辽宁阜新·八年级校考期末)如图,一次函数y=﹣x+4的图象与y轴交于点A,与x轴交于点B,过AB中点D的直线CD交x轴于点C,且经过第一象限的点E(6,4).
(1)求A,B两点的坐标及直线CD的函数表达式;
(2)连接BE,求△DBE的面积;
(3)连接DO,在坐标平面内找一点F,使得以点C,O,F为顶点的三角形与△COD全等,请直接写出点F的坐标.
【变式3-3】(2023春·山东济南·八年级统考期中)若直线y mx8和ynx3都经过 x 轴上一点 B,与 y 轴分别交于A、C.
(1)写出 A、C 两点的坐标,A ,C ____ ;
(2)若BC平分∠ABO,求直线AB和CB的解析式;
(3)点D是y轴上一个动点,是否存在 AB上的动点E,使得△ADE与△AOB全等,若存在,请直接写出点E的坐标;若不存在,请说明理由.
【题型4 一次函数与等腰三角形】
【例4】(2023春·山西临汾·八年级校联考期中)已知正比例函数y=43x与一次函数y=3x−5的图象交于点A,且OA=OB.
(1)求A点坐标;
(2)求△AOB的面积;
(3)已知在x轴上存在一点P,能使△AOP是等腰三角形,请直接写出所有符合要求的点P的坐标.
【变式4-1】(2023春·四川宜宾·八年级统考期中)等腰三角形中,周长为20cm,设底边为x,腰长为y.
(1)求y与x之间的函数关系式;
(2)求自变量x的取值范围;
(3)在平面直角坐标系中画出函数的图象.
【变式4-2】(2023春·江苏盐城·八年级校考期末)如图是8×8的正方形网格,每个小方格都是边长为1的正方形,A、B是格点(网格线的交点).以网格线所在直线为坐标轴,在网格中建立平面直角坐标系xOy,使点A坐标为(-2,4).
(1)在网格中,画出这个平面直角坐标系;
(2)在第二象限内的格点上找到一点C,使A、B、C三点组成以AB为底边的等腰三角形,且腰长是无理数,则点C的坐标是______;
(3)点D为x轴上一动点,当△ABD的周长最小时,点D的坐标为_________.
【变式4-3】(2023春·山东青岛·八年级校考期中)如图,直线l1:y1=-x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l 1上一点,另一直线l2:y2=12x+b过点P.
(1)求点P坐标和b的值;
(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动至 A,设点Q的运动时间为t秒.
①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;
②是否存在t的值,使△APQ面积为△APC的一半?若存在,请求出t的值;若不存在,请说明理由.
③是否存在t的值,使△APQ为以AQ为底的等腰三角形?若存在,请求出t的值;若不存在,请说明理由.
【题型5 一次函数与等腰直角三角形】
【例5】(2023春·广东深圳·八年级统考期中)如图1,已知直线y=﹣2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第一象限内作等腰Rt△ABC.
(1)A( );B( );
(2)求BC所在直线的函数关系式;
(3)如图2,直线BC交y轴于点D,在直线BC上取一点E,使AE=AC,AE与x轴相交于点F.
①求证:BD=ED;
②在直线AE上是否存在一点P,使△ABP的面积等于△ABD的面积?若存在,直接写出点P的坐标;若不存在,说明理由.
【变式5-1】(2023春·辽宁大连·八年级统考期末)如图,等腰Rt△AOB在平面直角坐标系xOy上,∠B=90°, OA=4.点C从原点O出发,以每秒1个单位的速度沿x轴的正方向运动,过点C作直线l⊥OA,直线l与射线OB相交于点N.
(1)点B的坐标为____________;
(2)点C的运动时间是t秒.
①当2⩽t⩽4时,△AOB在直线l右侧部分的图形的面积为S,求S(用含t的式子表示);
②当t>0时,点M在直线l上且△ABM是以AB为底的等腰三角形,若CN=32CM,求t的值.
【变式5-2】(2023春·广东茂名·八年级统考期末)如图,在平面直角坐标系第一象限内,直线y=x与y=2x的交角内部作等腰Rt△ABC,使∠ABC=90°,边BC//x轴,AB//y轴,点A1,1在直线y=x上,点C在直线y=2x上,CB的延长线交直线y=x于点A1,作等腰Rt△A1B1C1,使∠A1B1C1=90°,B1C1//x轴,A1B1//y轴,点C1在直线y=2x上…按此规律,则等腰Rt△A2021B2021C2021的腰长为 .
【变式5-3】(2023春·天津和平·八年级天津市第五十五中学校考期末)如图1,在平面直角坐标系xOy中,直线y=kx+8分别交x轴,y轴于A、B两点,已知A点坐标(6,0),点C在直线AB上,横坐标为3,点D是x轴正半轴上的一个动点,连接CD,以CD为直角边在右侧构造一个等腰Rt△CDE,且∠CDE=90°.
(1)求直线AB的解析式以及C点坐标;
(2)设点D的横坐标为m,试用含m的代数式表示点E的坐标;
(3)如图2,连接OC,OE,请直接写出使得△OCE周长最小时,点E的坐标.
【题型6 一次函数与动点最值问题】
【例6】(2023春·四川成都·八年级成都实外校考期中)在平面直角坐标系xOy中,对任意两点A(x1,y1)与B(x2,y2)的“YY距离”,给出如下定义:
若|x1−x2|≥|y1−y2|,则点A(x1,y1)与B(x2,y2)的“YY距离”是|x1−x2|;
若|x1−x2|0,
解得:0
相关试卷
这是一份初中1 函数练习题,共67页。
这是一份北师大版八年级数学上册专题1.7勾股定理章末八大题型总结(拔尖篇)同步练习(学生版+解析),共66页。
这是一份苏科版八年级数学上册专题3.9代数式章末八大题型总结(拔尖篇)同步练习(学生版+解析),共50页。