





新高考化学三轮冲刺考前通关练习13 化学反应原理综合(2份打包,原卷版+解析版)
展开目录
【高考预测】预测考向,总结常考点及应对的策略
【技法必备】提供方法技巧,解决问题策略
【误区点拨】点拨常见的易错点
【抢分通关】分析命题热点,把握解题技巧,精选名校模拟题
化学反应原理综合题是高考必考题型,常与生产、生活、科技等紧密联系的物质为背景材料,把热化学、电化学及四大平衡知识融合在一起命制,题目设问较多,涉及内容也较多,多数题目含有图像或图表,导致思维转换角度较大,对考生思维能力的要求较高。主要考查学生的信息处理能力、学科内综合分析能力,应用反应原理解决生产实际中的具体问题,体现了“变化观念与平衡思想”的核心素养。本题型常涉及:①化学反应能量变化的本质及应用盖斯定律计算。②化学反应速率计算及影响因素。③以图像、图表形式考查化学平衡的移动、平衡态判断、转化率计算、平衡常数应用及计算、可逆反应的能量计算等。④溶液中离子平衡分析包括难溶电解质的溶解平衡移动及计算。⑤氧化还原反应及电化学原理,尤其是电极反应式书写。
技法1 利用盖斯定律书写热化学方程式的步骤和方法
1.计算步骤:
概率预测
☆☆☆☆☆
题型预测
主观填空题☆☆☆☆☆
考向预测
①反应热、盖斯定律的应用;
②能量图象
③化学反应速率、化学平衡、化学反应进行的方向的综合分析及应用
2.计算方法
技法2 反应热大小的比较规律
1.吸热反应的ΔH比放热反应的ΔH大(前者大于0,后者小于0)
2.等量的可燃物完全燃烧所放出的热量比不完全燃烧所放出的热量多
例:C(s)+O2(g)===CO2(g) ΔH1<0 C(s)+O2(g)===CO(g) ΔH2<0;ΔH1为完全燃烧放出的热量多,又ΔH1和ΔH2均为负值,所以ΔH1<ΔH2
3.产物相同时,A(g)燃烧放出的热量比等量的A(s)燃烧放出的热量多
例:S(g)+O2(g)===SO2(g) ΔH1<0
S(s)+O2(g)===SO2(g) ΔH2<0 则ΔH1<ΔH2
4.反应物相同时,生成C(l)所放出的热量比生成等量的C(g)放出的热量多
例:A(g)+B(g)===C(l) ΔH1<0
A(g)+B(g)===C(g) ΔH2<0 则ΔH1<ΔH2
5.对于可逆反应,因反应不能进行完全,实际反应过程中放出或吸收的热量要小于理论值
例:2SO2(g)+O2(g)2SO3(g) ΔH=-197 kJ·ml-1,向密闭容器中通入2 ml SO2和1 ml O2反应达平衡后,放出的热量小于197 kJ
6.对于同一反应,化学计量数大的,对应放出(吸收)的热量多
例:2H2(g)+O2(g)===2H2O(l) ΔH1<0
H2(g)+O2(g)===H2O(l) ΔH2<0 则ΔH1<ΔH2
7.生成等量的水时,强酸和强碱的稀溶液反应比弱酸和强碱或强酸和弱碱或弱酸和弱碱的稀溶液反应放出的热量多
8.离子电荷相同时,半径越小,断裂离子键时吸收的能量越多
9.若比较的是ΔH的大小,则看的是ΔH的整体数值,包括正负号进行比较 ;若题中所说的是放出(吸收)的热量大小比较,则比较的是ΔH的绝对值大小。
技法3 能量图像的分析方法
技法4 平衡转化率大小变化分析技巧
1.转化率问题首先看是否是平衡转化率,若为非平衡状态的转化率,则侧重分析温度、压强、浓度对反应快慢、催化剂对反应快慢及选择性(主副反应)的影响;若为平衡转化率,则侧重分析温度、压强、浓度对化学平衡的影响,有时也涉及温度对催化活性的影响。
2.判断反应物转化率的变化时,不要把平衡正向移动与反应物转化率提高等同起来,要视具体情况而定。常见有以下几种情形:
反应类型
条件的改变
反应物转化率的变化
有多种反应物的可逆反应:mA(g)+nB(g) pC(g)+qD(g)
恒容时只增加反应物A的用量
反应物A的转化率减小,反应物B的转化率增大
同等倍数地增大反应物A、B的量
恒温恒压条件下
反应物转化率不变
恒温恒容条件下
m+n>p+q
反应物A和B的转化率均增大
m+n<p+q
反应物A和B的转化率均减小
m+n=p+q
反应物A和B的转化率均不变
只有一种反应物的可逆反应:mA(g)
nB(g)+pC(g)
增加反应物A的用量
恒温恒压条件下
反应物转化率不变
恒温恒容条件下
m>n+p
反应物A的转化率增大
m<n+p
反应物A的转化率减小
技法5 三种平衡常数的计算
a A(g)+b B(g)c C(g)+d D(g)
1.浓度平衡常数:Kc=
①平衡量必须为平衡时的浓度
②等体积反应:可以用平衡时的物质的量代替平衡时的浓度
③恒压条件下:先计算平衡体积,再算平衡常数
2.压强平衡常数:Kp=
①平衡量为平衡时的浓度、物质的量、体积等均可
②分压Pi=P总×xi=P总×=(P1+P2+P3+…)×
③恒容条件下:先计算平衡总压,再算平衡常数或直接根据分压计算
3.物质的量分数平衡常数:Kx=
①平衡量为平衡时的浓度、物质的量、体积等均可
②物质的量分数:xi=
技法6 速率常数和平衡常数的关系
基元反应:a A(g)+b B(g)c C(g)+d D(g)
1.速率方程
(1)抽象化速率方程:笼统的正逆反应速率
①v正=k正·ca(A)·cb(B)、v逆=k逆·cc(C)·cd(D)
②v正=k正·pa(A)·pb(B)、v逆=k逆·pc(C)·pd(D)
③v正=k正·xa(A)·xb(B)、v逆=k逆·xc(C)·xd(D)
(2)具体化速率方程:以具体物质表示的正逆反应速率
①vA正=k正·ca(A)·cb(B)、vC逆=k逆·cc(C)·cd(D)
②vA正=k正·pa(A)·pb(B)、vC逆=k逆·pc(C)·pd(D)
③vA正=k正·xa(A)·xb(B)、vC逆=k逆·xc(C)·xd(D)
2.速率常数和平衡常数的关系
(1)抽象化:平衡条件v正=v逆,①=Kc;②=Kp;③=Kx
m=n+p
反应物A的转化率不变
(2)具体化:平衡条件=,①=Kc;②=Kp;③=Kx
技法7 多重平衡体系化学平衡常数的计算
1.多重平衡是指相互关联的若干平衡同时存在于一个平衡系统中,且至少有一种物质同时参与几个相互关联的平衡。
多重平衡涉及的反应多,看似杂乱,但各个平衡之间存在内在联系,要么连续,要么竞争,这样可将三个平衡简化为两个平衡,从而快速解答。也可以从元素守恒入手,只要抓住起始状态与平衡状态即可,可以忽略复杂的反应过程,从而使复杂问题简单化。
2.同一容器内的多平衡体系,相同组分的平衡浓度相同
①化学平衡:a A(g)b B(g)+c C(g),c C(g)d D(g)+e E(g)
②特点:计算K1、K2时,用到的c(C)相同
3.计算方法
(1)元素守恒法:根据某元素守恒,计算出平衡时相应组分的浓度
(2)设未知数法
①有几个平衡假设几个未知数(变化量)
②用这些未知数表示出平衡时相应组分的浓度
③根据相关等量计算出未知数,带入平衡常数表达式求解
技法8 化学原理原因、理由类规范语言表述答题模板
1、答题模板:“有理”——化学原理,“有据”——事实依据
可采取以下两种方式:(1)“正说”——“直接原因+根本目的”(2)“反说”——“如果……,就……”
2、规范解答归纳
(1)明矾净水的原理:明矾溶于水电离出的Al3+发生水解反应:Al3++3H2OAl(OH)3(胶体)+3H+,氢氧化铝胶体具有较强的吸附能力,能够吸附水中悬浮的杂质使水澄清。
(2)高铁酸钠既能用作净水剂又能对水进行消毒、杀菌的原理:Na2FeO4中的铁元素呈+6价,具有很强的氧化性,能对水进行杀菌、消毒,其还原产物Fe3+发生水解反应:Fe3++3H2OFe(OH)3(胶体)+3H+,氢氧化铁胶体具有较强的吸附能力,能够吸附水中悬浮的杂质使水澄清。
(3)碳酸铵溶液显碱性的原因:碳酸铵溶于水能发生水解,NH+H2ONH3·H2O+H+,CO+H2OHCO+OH-,CO 的水解程度大于NH的水解程度,故溶液显碱性。
(4)碳酸氢钠溶液显碱性的原因:碳酸氢钠溶于水后,HCOH++CO,HCO+H2OH2CO3+OH-,HCO 的水解程度大于其电离程度,故溶液显碱性。
(5)蒸干灼烧FeCl3溶液得到Fe2O3的原理:在FeCl3溶液中存在水解平衡:FeCl3+3H2OFe(OH)3+3HCl,在蒸发过程中,由于氯化氢大量挥发导致水解平衡向右移动,蒸干溶液时得到Fe(OH)3,灼烧时发生反应
2Fe(OH)3Fe2O3+3H2O,最后得到Fe2O3。
(6)用酸性过氧化氢溶液溶解铜片的实验中,铜片溶解的速率随着温度的升高先加快后减慢的原因:温度升高能够加快反应Cu+2H++H2O2===Cu2++2H2O的反应速率,故铜的溶解速率加快,当温度升高到一定程度后,H2O2的分解速率加快,此时H2O2浓度的下降对反应速率的影响超过了温度对反应速率的影响,故铜的溶解速率减慢。
(7)适当升温氮气和氢气合成氨的速率加快,但是温度过高反应速率反而下降的原因:温度升高能够加快合成氨反应的反应速率,但温度过高会使催化剂失去活性,反应速率反而降低。
(8)用惰性电极电解饱和食盐水时,阴极附近溶液呈碱性的原因:在阴极发生反应:2H++2e-===H2↑,由于氢离子不断放电,破坏了水的电离平衡,促进了水的电离,导致溶液中的c(OH-)>c(H+),使溶液显碱性。
(9)在氯碱工业中,电解饱和食盐水时常用盐酸控制阳极区溶液的pH在2~3的原因:阳极产生的氯气与水发生反应:Cl2+H2OHCl+HClO,增大溶液中盐酸的浓度能够使平衡逆向移动,减少氯气在水中的溶解,有利于氯气的逸出。
(10)在燃料电池中,常在电极表面镀上铂粉的原因:增大电极单位面积吸收气体的分子数,加快电极反应速率。
(11)在尾气吸收装置中试剂的作用:吸收尾气中××气体,防止污染空气。
(12)在定量实验或者制备实验中装置最后连接的干燥管的作用:防止空气中的××气体进入××装置对实验造成干扰(有时还可能同时起到吸收尾气的作用,如在有关氨气的探究实验中,最后连接的盛有浓硫酸的洗气瓶的作用就可以吸收多余的氨气,同时能防止空气中的水蒸气进入)。
(13)在导管末端连接倒置漏斗、干燥管浸入水或溶液中的原因:防倒吸(同时具有扩大吸收面积,加快吸收速率的作用)。
(14)在气体的连续实验中,若有需要用盛有碱石灰的干燥管吸收CO2或H2O(g)等气体来进行定量测定的部分,常常需要在实验开始和结束时通入氮气或稀有气体等与实验无关的气体的作用:1)实验开始时的作用:排尽装置内的空气,防止空气中的××对实验造成干扰。2)实验结束时的作用:将产生的××气体全部排出被××试剂完全吸收,以减少实验误差。
例:TeO2是两性氧化物,微溶于水,可溶于强酸和强碱,从电解精炼铜的阳极泥中提取碲的一种工艺流程如下:
“沉碲”时控制溶液的pH为4.5~5.0,生成TeO2沉淀。如果H2SO4过量,溶液酸度过大,将导致碲的沉淀不完全,原因是__________________________。
答案:TeO2是两性氧化物,H2SO4过量会导致TeO2继续与H2SO4反应而损失
技法9 化学原理理论平衡型简答题规范语言表述答题模板
1、答题策略:理论型简答题一般是演绎法的三段式答题模式(前提、推理、结论):
(1)问题所涉及大前提(相关的理论或规律)的表述,一般很熟悉的理论或规律可以只写名称,也可以用化学方程式等化学用语表示,并不需要把其详细内容写出;
(2)问题的推理过程(具体条件下的变化等)的表述;
(3)问题所涉及的变化的结果。
2、答题模板:
(1)速率、平衡移动类简答题的答题模板:叙特点(反应特点或容器特点)→变条件→定方向→得结论(或结果);
(2)溶液中离子平衡简答题模板:……存在……平衡,……条件使平衡向……方向移动,……结论。
例:已知汽缸中生成NO的反应为
N2(g)+O2(g)2NO(g) ΔH>0
汽车启动后,汽缸温度越高,单位时间内NO排放量越大,原因是______________________________________
________________________________________________________________________。
答案:温度升高,反应速率加快,平衡正向移动
技法10 化学原理图表、图象类试题规范语言表述
1.图象题
(1)会识图:一看面,二看线,三看点(弄清纵、横坐标的意义,弄清起点、拐点、终点的意义;看清曲线的变化趋势),四看量变,五看是否作辅助线。
(2)会分析:分析图象中隐含的信息,将其加工成化学语言,同时联系化学概念、化学原理,从而快速解决问题。
2.表格数据题
(1)明含义:理解表格中各个列项中数字的含义,巧妙地将表格语言转换成化学语言。
(2)析数据:理顺表格中数据间的变化趋势,联系相关的化学知识,寻找其中的变化规律,快速准确地解决问题。
口诀:图象题要细心,全面观察得高分;曲线题能速答,分析走势好办法;表格题要解好,转化数据离不了。
一、化学原理题易错提示
(1)电极反应式的书写:注意元素守恒和电荷守恒,注意是碱性介质、酸性介质还是熔融盐。
(2)化学平衡状态判断“三关注”:容器特征、反应特点、物质的状态。
(3)溶液中微粒浓度的关系“三守恒”:电荷守恒、物料守恒、质子守恒。
(4)电解计算破题“三方法”:根据电子守恒计算、根据总反应式计算、根据关系式计算。
二、有关化学反应速率和化学平衡的易错点
1.无论是用某一反应物表示还是用某一生成物表示,由于Δc是取浓度变化的绝对值,因此,其化学反应速率都取正值,且是某一段时间内的平均速率。
2.化学反应速率可用反应体系中一种反应物或生成物浓度的变化来表示,一般是以最容易测定的一种物质表示,书写时应标明是什么物质的反应速率。
3.在一定温度下,固体和纯液体物质,其单位体积里的物质的量保持不变,即物质的量浓度为常数,因此它们的化学反应速率也被视为常数。由此可知,现在采用的表示化学反应速率的方法还有一定的局限性。
4.在同一反应中,用不同的物质表示同一时间的反应速率时,其数值可能不同,但这些数值所表达的意义是相同的即都是表示同一反应的速率。各物质表示的反应速率的数值有相互关系,彼此可以根据化学方程式中的各化学计量数进行换算。
5.一般来说在反应过程中都不是等速进行的,因此某一时间内的反应速率实际上是这一段时间内的平均速率。
6.由于固体和纯液体的浓度可视为常数,故改变其用量反应速率不变。但当固体颗粒变小时,其表面积增大将导致反应速率增大。
7.压强对化学反应速率的影响是通过改变反应物浓度实现的,所以分析压强的改变对反应速率的影响时,要从反应物浓度是否发生改变的角度来分析。若改变总压强而各物质的浓度不改变,则反应速率不变,如恒容时通入稀有气体来增大压强,反应速率不变(因为浓度未改变)。
8.改变温度,使用催化剂,反应速率一定发生变化,其他外界因素的改变,反应速率则不一定发生变化。
9.其他条件一定,升高温度,不论正反应还是逆反应,不论放热反应还是吸热反应,反应速率都要增大,只不过正、逆反应速率增加的程度不同。
10.在不同条件下进行的反应物和生成物相反的反应不是可逆反应。
11.各物质的物质的量之比等于方程式的化学计量数之比时,不一定是平衡状态,因为此条件并不能说明各组分的物质的量不再变化了。
12.化学平衡的建立与途径无关,既可以从正反应方向(投入反应物),也可以从逆反应方向(投入生成物)建立。
13.某一可逆反应,在一定条件下达到了平衡,化学反应速率再改变时,平衡不一定发生移动,如反应前后气体体积不变的 反应,增大压强或使用催化剂,速率发生变化,但平衡不移动。如果平衡发生了移动,则化学反应速率一定发生了改变。
14.化学平衡向正反应方向移动,则反应物的转化率不一定增大,若有多种反应物的反应,当增大某一反应物的浓度,化学平衡向正反应方向移动,只会使别的反应物的转化率增大,但该物质的转化率反而减小。
15.增加固体或纯液体的量,化学平衡不移动,因为当反应混合物中存在与其他物质不相混溶的固体或液体物质时,由于其“浓度”是恒定 的,不随其量的增减而变化,故改变这些固体或液体的量,对化学反应速率以及化学平衡均无影响,但要注意固体的表面积对化学反应速率的影响。
16.化学平衡发生移动时,化学平衡常数不一定改变,只有温度改变,平衡常数才会改变。
17.要记清楚最基本的速率时间图,如改变反应物或生成物的浓度导致速率变化时,正反应和逆反应速率中有一支与原平衡点相连。若同时改变反应物和生成物浓度(或改变压强、温度、使用催化剂)则与原平衡点相脱离。记住先到达平衡表示温度高,压强大。根据平衡图像分析可逆反应特点时,往往从最高点以后进行分析,也就是说研究的对象必须是已建立平衡的反应。
18.改变浓度和压强不能改变活化分子百分数,但能改变单位体积活化分子数,故能改变反应速率。改变温度和使用催化剂均能改变活化分子百分数,使单位体积活化分子数改变,从而改变反应速率。
19.勒夏特列原理只适用于判断“改变一个条件”时平衡移动的方向。若同时改变影响平衡移动的几个条件,不能简单地根据平衡移动原理来判断平衡移动的方向,只有在改变的条件对平衡移动的方向影响一致时,才能根据平衡移动原理进行判断。例如,N2(g)+3H2(g) 2NH3(g) ΔH<0,同时加压、升温,平衡移动的方向无法确定。若加压同时又降温,则平衡向正反应方向移动。
20.正、逆反应的平衡常数互为倒数;若化学方程式中各物质的化学计量数都扩大或缩小至原来的n倍,则化学平衡常数变为原来的n次幂或次幂;两方程式相加得到新的化学方程式,其化学平衡常数是两反应平衡常数的乘积。
21.代入平衡常数表达式的是平衡浓度,而不是任意时刻的浓度,更不能将物质的量代入,反应物或生成物中有固体和纯液体存在时,由于其浓度可看做“l”而不代入公式。
22.化学平衡常数只与温度有关,与反应物或生成物的浓度无关。
13.起始浓度、平衡浓度不一定符合化学计量数之比,但物质之间是按化学计量数之比反应和生成的,故各物质的浓度变化之比一定等于化学计量数之比,这是计算的关键。
24.反应能否自发进行需综合考虑焓变和熵变对反应的影响,复合判据ΔH-TΔS<0的反应不一定能够实际发生,只是指出了在该条件下化学反应自发进行的趋势,还要考虑化学反应的快慢问题。
25.判断一个化学反应能否自发进行,若无任何外加条件,可以认为我们所学过的化学反应(电解反应除外)都是能够自发进行的。
【热点一】反应热+反应机理+化学反应平衡综合
1.(2024·河北沧州·二模)二氧化碳和甲烷是两种温室效应气体,将二者进行转化,可得到具有高附加值的化学品或清洁燃料。
(1)和催化重整制取和
主反应:①
副反应:②
③
④
主反应的 ,该反应在 (填“较高温度”或“较低温度”)下可自发进行。
(2)和反应可制取乙烯,反应的化学方程式为。一定温度下,向某恒容密闭容器中充入和,体系的初始压强为,若平衡时的转化率为,不考虑副反应的发生,的平衡分压为 (用表示,下同),该反应的压强平衡常数 。
(3)过光电化学转化可制得乙二醇,在某催化剂作用下该反应的机理如图所示。图中表示催化剂被光激发出电子之后产生的空穴。
①下列说法错误的是 (填标号)。
A.该反应为自由基型反应
B.生成的反应为
C.该反应的副产物
D.该机理中存在极性键和非极性键的断裂和形成
②以乙二醇为燃料的燃料电池工作时,乙二醇在电池 (填“负极”或“正极”)发生反应,若以溶液为电解液,则该电极的反应式为 。
(4)铜基催化剂电催化还原制乙醇的两种途径(分别以和作催化剂)的相对能量变化如图所示,标“”的为吸附在催化剂上的物质。分析可知,以 作催化剂的催化效率更高。
2.(2024·四川成都·二模)某温度下,利用CO2生产甲醇主要涉及以下两个反应。
反应I._______
反应Ⅱ.CO2(g)+H2(g)⇌CO(g)+H2O(g) ΔH2=+41.2kJ·ml-1
回答下列问题:
(1)已知CO(g)+2H2(g)CH3OH(g) ΔH3=–90.6kJ·ml-1。反应I的转化原理如图所示。该反应的热化学方程式为 ,在 条件下反应I可自发发生。
(2)若在恒压条件下密闭容器中发生反应I和Ⅱ,平衡后再充入惰性气体,反应Ⅱ平衡将 移动(填“正向”、“逆向”或“不”)。
(3)将1mlCO2(g)和3mlH2(g)充入密闭容器发生反应I和Ⅱ,并达到平衡状态。相同温度下,在不同压强下测得CO2的平衡转化率、CH3OH(g)的选择性和CO的选择性随压强变化曲线如图所示。图中表示CO2的平衡转化率的曲线是 (填“m”、“n”或“p”),A点时H2的转化率为 ,CH3OH的平衡分压为 MPa(保留两位有效数字)。
(4)研究表明,CO催化变换反应:CO(g)+H2O(g)⇌CO2(g)+H2(g) ΔH=–41.2kJ·ml-1。此反应的速率方程为,式中x(CO)、x(H2O)、x(CO2)、x(H2)分别表示各组分的物质的量分数。Kp为平衡常数,k为反应的速率常数,温度升高时k值增大。在气体组成和催化剂一定的情况下,反应速率随温度变化的曲线如图所示。温度升高时,CO催化变换反应的Kp (填“增大”、“减小”或“不变”)。根据速率方程分析,T>Tm时v逐渐减小的原因是 。
3.(2024·内蒙古赤峰·三模)氢能新质生产力正加速发展。工业上利用天然气制备氢气,还能得到乙烯、乙炔等化工产品,有关反应原理如下:
反应①:2CH4(g)C2H2(g)+3H2(g) ∆H1=+376.3kJ/ml K1;
反应②:2CH4(g)C2H4(g)+2H2(g) ∆H2=+202.0kJ/ml K2;
回答下列问题:
(1)反应③:C2H2(g)+2H2(g)C2H4(g) ∆H3= kJ/ml,K3= (用含K1、K2的代数式表示)。
(2)若用、、和表示CH4、C2H2、H2和固体催化剂,如图在催化剂表面进行反应①,从吸附到解吸的过程中,能量状态最高的是 (填字母)。
(3)反应②的速率方程为(v正=k正·c2(CH4),v逆=k逆·c(C2H4)·c2(H2)(k正、k逆为正、逆反应速率常数)。其他条件相同,T1℃达到平衡时k正=1.5k逆,T2℃达到平衡时k正=3.0k逆。由此推知,T1 T2(填“>”“<”或“=”)。
(4)向恒温恒容密闭容器中充入适量CH4,同时发生上述反应①和反应②,在不同催化剂Cat1、Cat2作
用下,测得单位时间内H2的产率与温度的关系如图所示。在其他条件相同时,催化效率较高的是 (填“Cat1”或“Cat2”)。在Cat2作用下,温度高于500℃时,H2的产率迅速降低的原因是 。
(5)在一定温度、102kPa下, 向反应器中充入1ml C2H4(g)发生反应:C2H4(g)C2H2(g)+H2(g)制备氢气。
①实际操作中,往往向反应器中充入一定量的水蒸气,其目的是 。
②忽略其他副反应,若向反应器中充入5ml水蒸气,平衡时(C2H4的转化率为75%,则该反应的Kp= 。
4.(2024·四川德阳·二模)我国承诺在2030年实现“碳达峰”,2060年实现“碳中和”,资源化利用具有重要意义,回答下列问题:
I.和在镍基催化作用下重整模型如图所示(已知:*表示催化剂活性位点,表示活性亚甲基)。
(1)和在镍基催化作用下发生重整反应的化学方程式为 。该反应在高温下才能自发进行,判断反应焓变 (填“大于”“小于”或“等于”)0,判断理由是 。
(2)已知经验公式:(为活化能,k为速率常数,R和C为常数),该反应的速率常数、活化能与温度的关系如图:
该反应的活化能 。(用含有的式子表示)
Ⅱ.已知二氧化碳和氢气合成甲醇可能发生如下反应:
i.
ii.
(3)为提高甲醇平衡产率,可采取的措施有 (至少答两条)。
(4)若以为催化剂,其活性温度范围通常为。向装有催化剂的密闭容器按投料比为通入反应物,保持压强为,若只发生反应i,其他条件相同,不同温度下。5分钟内,测得温度与甲醇的产率关系如图,实际产率呈现先升高后降低的原因是 。
(5)时的压强平衡常数 。(写出计算式)
5.(23-24高三下·河南·联考)我国科学家成功利用光伏发电,将电解水获得的H2与CO2反应合成甲醇,再由甲醇经若干酶促反应合成淀粉。该研究成果已在国际学术期刊《科学》上发表。回答下列问题:
(1)CO2人工合成转化为淀粉只需要11步,其中前两步涉及的反应如图1所示。
反应CO2(g)+2H2(g)=HCHO(g)+H2O(g)的H= (用含H1、H2、H3、H4的代数式表示)。
(2)有学者结合实验和计算机模拟结果,得出CO2(g)+H2(g)CO(g)+H2O(g)的一种反应历程如图2所示,其中吸附在催化剂表面的物种用“·”标注,TS1、TS2、TS3、TS4均为过渡态。决速步骤对应的化学方程式为 ;TS3对应的步骤适合在 (填“高温”或“低温”)条件下进行。
(3)在密闭容器中充入一定量的CO2和H2,发生反应CO2(g)+3H2(g)CH3OH(g)+H2O(g) H<0,在催化剂作用下单位时间内CO2的转化率与温度、催化剂的关系如图3所示。
①a点时,CH3OH的生成速率 (填“>”“<”或“=”,下同)CH3OH的消耗速率;催化效率:Cat2 Cat1。
②b点之后CO2的转化率降低,可能的原因是 。
(4)已知CO2催化加氢的主要反应如下:
反应I.CO2(g)+3H2(g)CH3OH(g)+H2O(g)
反应II.CO2(g)+H2(g)CO(g)+H2O(g)
①230℃时,将CO2和H2按物质的量之比为1:3混合通入恒温刚性密闭容器中,在催化剂作用下同时发生反应I和反应II,容器内压强随时间的变化如下表所示。
平衡时p(CO2)=0.1p0,则该温度下反应I的化学平衡常数Kp= MPa-2(用含p0的代数式表示)。
②二氧化碳催化加氢合成甲醇反应往往伴随副反应II。一定温度和压强条件下,为了提高反应速率和甲醇选择性,应当 。
(5)铜(Cu)是CO2催化加氢催化剂中的一种成份。已知Cu属于立方晶系,晶胞参数为anm,密度为
时间/min
0
20
40
60
80
压强/MPa
0.95
0.92
0.90
0.90
dg·cm-3,则Cu晶胞中含有Cu原子数为 (用含a、d、NA的式子表示,NA表示阿伏加德罗常数的值)。
【热点二】反应热+化学反应速率+化学反应平衡综合
1.(2024·山西晋中·二模)煤的气化与液化是实现煤清洁利用的基本途径;的资源化利用有利于碳中和目标的实现。回答下列问题:
(1)煤制备乙烯的途径之一如下:
;
;
。
已知:① ;
② 。
则 ,反应的自发性与温度的关系是 。
(2)催化加氢可得到甲烷: ,从速率与平衡移动两方面考虑,反应温度不宜过低或过高,理由是 。
(3)向某密闭容器中充入一定量的和,在条件下发生反应:。当充入量时的平衡转化率~的关系与时的平衡转化率~的关系如图所示:
①表示时平衡转化率~的关系是 (填“Ⅰ”或“Ⅱ”)。
②当充入量、温度为时,反应开始后经过达到平衡状态,若最初充人,则
内 ;实际生产中从反应炉出来的气体中的转化率总是低于图中表示的相应值,最可能的原因是 。
③下列事实不能说明在一定温度下该反应已经达到平衡状态的是 (填选项字母)。
A.容器中气体总体积保持不变
B.混合气体的平均相对分子质量保持不变
C.相同时间内键与键断裂的数目相等
D.与比值保持不变
2.(2024·山东济南·一模)天然气、石油钻探过程会释放出CO2、H2S等气体。某种将CO2和H2S共活化的工艺涉及如下反应:
①
②
③
④
回答下列问题:
(1)已知:298K时,18g气态水转化为液态水释放出44kJ的能量;H2S(g)的标准摩尔燃烧焓(△H)为-586kJ·ml-1,则COS(g)的标准摩尔燃烧焓()为 kJ·ml-1,反应②在 (填“高温”“低温”或“任意温度”)下能自发进行。
(2)一定条件下,向起始压强为200kPa的恒容密闭容器中通入等物质的量的CO2(g)和H2S(g)混合气体,发生上述反应,25min时,测得体系总压强为210kPa,S2(g)的平均反应速率为 kPa·min-1.达到平衡时,测得体系总压强为230kPa,,此时H2S(g)的平衡转化率为 ,反应②的标准平衡常数 (已知:分压=总压×该组分物质的量分数,对于反应,,其中,、、、为各组分的平衡分压)。
(3)将等物质的量的CO2(g)和H2S(g)混合气体充入恒压密闭容器中,发生上述反应,反应物的平衡转化率、COS或H2O的选择性与温度关系如图所示。COS的选择性,H2O的选择性。
①表示“COS的选择性”的曲线是 (填“曲线a”或“曲线b”);
②温度低于500℃时,H2S的转化率与CO2的相等,原因是 。
3.(2024·河北·二模)油气开采、石油化工、煤化工等行业的废气中普遍含有,需要对回收处理并加以利用。
已知:①
②
③
回答下列问题:
(1)反应③的 。
(2)下列叙述不能说明反应③达到平衡状态的是___________(填标号)。
A.断裂键的同时断裂键
B.恒容恒温条件下,反应体系的气体压强不再变化
C.恒容条件下,反应体系的气体密度不再变化
D.反应速率:
(3)在不同温度、反应压强为,进料的物质的量分数为的条件下(其余为N2),对于反应①来说,H2S分解的平衡转化率与H2S的物质的量分数的关系如图1所示。则温度T1、T2、T3由大到小的顺序为 。温度一定时,H2S的物质的量分数越大,H2S分解的平衡转化率越小,原因是 。
(4)压强为时,向恒压密闭容器中充入发生反应①,平衡时各组分的体积分数与温度的关系如图2所示。代表的是曲线 (填“I”“II”或“III”)。X点对应温度下,反应①的压强平衡常数 。
(5)反应①的速率方程为,为速率常数)。
①某温度下,反应①的化学平衡常数K=10,k逆=3,则k正= 。
②已知:(式中,R为常数,单位为,温度单位为K,E正表示正反应的活化能,单位为kJ·ml-1)。Rlink正与不同催化剂(Catl、Cat2为催化剂)、温度()关系如图3所示。相同条件下,催化效率较高的是 (填“Catl”或“Cat2”),判断依据是 。在催化剂Cat2作用下,正反应的活化能为 。
4.(2024·河北邢台·二模)工业废气中的二氧化碳加氢制甲醇是“碳中和”的一个重要研究方向,在催化剂作用下,主要发生以下反应:
ⅰ. ;
ⅱ. ;
ⅲ. 。
(1)已知反应ⅲ正反应的活化能为,则其逆反应的活化能为 (用含有的式子表示)。
(2)①一定温度下,向恒容密闭容器中通入物质的量之比为1:3的与,发生以上3个反应,下列能说明反应达到平衡状态的是 。
A. B.平衡常数不再发生变化
C.气体密度不再改变 D.测得的浓度保持不变
②若起始压强为,反应经后达到平衡,此时体系压强为,的分压:,则内反应的平均速率 ,的选择性为 %,反应ⅰ的平衡常数 (保留两位有效数字)。
(3)在时,反应ⅰ在不同条件下达到平衡,设体系中甲醇物质的量分数为,在℃
下的、在下的。如图所示。
图中对应恒温过程的曲线是 。当的平衡转化率为时,反应条件可能为 或 。
(4)为探究原料气中混入气体对反应的影响。测得平衡时的转化率、随原料气中的变化如图所示。请解释、呈现该变化的趋势的原因: 。
5.(2024·河南周口·二模)通过不同方式转化为高附加值化学品有利于实现“双碳目标”,其中加氢转化为二甲醚()是常见的一种方式,其反应过程如下:
Ⅰ.
Ⅱ.
Ⅲ.
回答下列问题:
(1)加氢制反应的热化学方程式为 。
(2)进料比时,不同压强下平衡转化率随温度的变化关系如图所示。①四条曲线对应压强、、和由大到小的顺序为 ,判断依据是 。②压强为时,平衡转化率随温度升高先减小后增大,原因是 。
(3)上图中,当反应温度高于350℃时几条曲线重合,说明此时的转化率不受压强影响,原因是 。
(4)反应Ⅱ和反应Ⅲ的平衡常数()随温度变化关系如图2所示,表示反应Ⅱ的曲线为 (填“a”或“b”)。恒温恒压条件下,向体系中通入和,达到平衡时转化率为50%,为0.07ml,该条件下生成的CO可以忽略不计,则的物质的量为 ml,加氢制的反应用摩尔分数表示的平衡常数 (列出计算式)。(已知反应的,物质i的摩尔分数。)
【热点三】反应热+化学反应速率+化学反应平衡+结构与性质综合
1.(2024·江苏·一模)乙醇是一种清洁的替代能源,催化加氢制备乙醇技术是当前的研究热点。
(1)催化加氢制备乙醇的反应为。
①若要计算上述反应的,须查阅的两个数据是的燃烧热和 。
②某金属有机骨架负载的铜基催化剂上,加氢生成的部分反应机理如图所示。
过程中两个均参与反应,画出的结构式(注明电荷) 。
(2)乙酸甲酯催化加氢制备乙醇主要涉及如下反应:
反应Ⅰ:
反应Ⅱ:
在其他条件不变时,将的混合气体以一定流速通入装有铜基催化剂的反应管,测得转化率、选择性选择性]随温度的变化如图所示。
①铜基催化剂须含合适物质的量之比的与的晶胞如图所示(立方体),晶体的密度可表示为 (用含的代数式表示,表示阿伏加德罗常数的值)。
②下均有,其原因是 。
③范围内,转化率随温度升高而迅速增大的主要原因是 。
④温度高于时,催化剂的催化活性下降,其原因可能是 。
2.(2024·广东佛山·二模)金属有机配合物广泛应用于各类催化反应。
Ⅰ.某铁的配合物催化1-丁烯和加成的部分历程如图。
(1)①写出1-丁烯和加成的化学方程式 。
②若丙→乙的活化能为,则甲→丙的反应热△H= (用含a的式子表达)。
(2)甲、乙的结构如图所示,Ar表示苯基。
①乙中Fe的配位数为 。
②下列说法正确的是 (填标号)。
A.甲→乙的过程中有键的断裂和形成
B.乙→丙的速率比甲→乙慢
C.升高温度,乙的平衡浓度减小
D.选用合适的催化剂可提高1-丁烯的平衡转化率
Ⅱ.某金属配合物的合成反应为:。该金属配合物的吸光度A随的变化如图所示[为定值]。为M和R完全反应的吸光度,为实际测得的最大吸光度,吸光度和的浓度成正比。
(3)x= 。
(4)解离平衡的解离度(即的平衡转化率)为 (用含、的式子表示)。
(5)若x=1,将10mL 0.01 、5mL 0.001 M溶液、5mL 0.001 R溶液混合,测得解离度,计算的解离平衡常数(写出计算过程)。
3.(2024·安徽黄山·二模)氨是最基本的化工原料,常用于制液氮、氨水、硝酸、铵盐和胺类等。
(1)工业合成氨是人类科学技术的一项重大突破,其反应如下:
根据下列键能数据,结合上述反应数据,计算的键能是 。
(2)合成氨工业中,原料气(及少量的混合气)在进入合成塔前需经过铜氨液处理,目的是除去其中,其反应为:。
①配离子的中心离子是 ,配位数是 。
②铜氨溶液吸收适宜的生产条件: 温、 压。(填“高”“低”)
(3)恒温恒压条件下,向容器中通入和,合成氨反应用摩尔分数表示的平衡常数,达到平衡时的转化率为 (保留3位有效数字)。(已知反应的,物质ⅰ的摩尔分数,)。
(4)制备时所需的可以通过反应合成,但缺。有学者倡议:常温下,把石膏矿中(Ⅱ)转化为难溶的,留下的和形成,反应方程式如下: ,化学平衡常数为,用下列相关的符号来表示 。通过计算反应的判断以上倡议 (填“可行”或“不可行”)。
化学键
键能
946
436
(已知、、、的、、)
(5)与镓在高温下生成,氮化镓晶胞结构可看作金刚石晶胞内部的碳原子被原子代替,顶点和面心的碳原子被原子代替。
①以晶胞边长为单位长度建立的坐标系可以表示晶胞中的原子位置,称作原子坐标。原子坐标为,则原子坐标为 。
②若为阿伏伽德罗常数的值,晶胞中原子与原子之间最短的核间距离是,则晶体的密度为 (只列计算式)。
4.(2024·全国·模拟预测)第19届杭州亚运会上,“零碳”甲醇火炬彰显了“绿色亚运”的精神。“零碳”甲醇是利用焦炉气副产物和工业尾气中的合成,涉及以下反应:
①
②
③
(1)反应③的为 ;有利于反应②自发进行的条件是 (填“低温”或“高温”)。
(2)一定条件下,向容积为V L的恒容密闭容器中通入1ml和2ml发生上述反应,反应20min时容器内反应达到平衡,容器中CO为,为。
①以表示的0~20min内平均反应速率 (用含a、b、V的代数式表示,下同),此时的浓度为 ,反应②的平衡常数为 。
③下列叙述正确的有 (填字母)。
A.混合气体的密度不变能表明反应①达到化学平衡状态
B.增大压强,会增大反应②的平衡常数
C.适当提高氢碳比,有利于提高的平衡产率
D.适当升高温度,反应①②③的速率均会增大
(3)优异的催化加氢制甲醇性能逐渐受到科研工作者的关注,其晶体结构单元如图所示(之
间紧密堆积,位于形成的空隙中且未画出),其中半径为,晶体结构单元的高为,该结构单元含的个数是 。已知阿伏加德罗常数的值为,则晶体的摩尔体积 。
5.(2024·湖北·三模)氙及其化合物在工业生产中有重要用途。
(1)1962年,化学家巴特利特合成了氙的第一个化合物,其在熔化时电离出和。Xe和混合制得的反应可以表示如下:
已知:①在标准状态下将1ml离子型晶体(如NaCl)拆散为1ml气态阳离子()和1ml气态阴离子()所需要的能量叫做晶格能,的晶格能为。
②Xe的第一电离能为。
③ 。
根据以上信息,计算反应 。
(2)不久,在三个不同实验室里又分别合成了、、三种简单化合物。其中一种化合物的晶体属四方晶系,晶胞参数如图所示,晶胞棱边夹角均为90°,表示阿伏伽德罗常数的值。则该化合物的化学式为 ,中心原子的价层电子对数为 ,晶体密度为 。
(3)一定条件下,向恒容密闭容器中充入Xe和混合气体,反应体系中存在的平衡及相应部分数据如下表所示。
已知:分压=总压×该组分物质的量分数;
对于反应
其中,、、、为各组分的平衡分压。
① 0(填“>”或“<”)。为提高平衡混合物中的含量,应 投料比(填“增大”或“减小”)。
②673K时充人23.77mlXe和,达平衡时容器内总压强,各产物的物质的量如下表所示:
则平衡转化率 (保留三位有效数字), 。
标准压强平衡常数
反应平衡
反应I:
360
反应II:
反应III:
化学式
物质的量/ml
3.60
19.80
0.36
新高考化学三轮冲刺考前通关练习12 化学实验综合(2份打包,原卷版+解析版): 这是一份新高考化学三轮冲刺考前通关练习12 化学实验综合(2份打包,原卷版+解析版),文件包含新高考化学三轮冲刺考前通关练习12化学实验综合原卷版docx、新高考化学三轮冲刺考前通关练习12化学实验综合解析版docx等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。
新高考化学三轮冲刺考前通关练习11 工艺流程综合(2份打包,原卷版+解析版): 这是一份新高考化学三轮冲刺考前通关练习11 工艺流程综合(2份打包,原卷版+解析版),文件包含新高考化学三轮冲刺考前通关练习11工艺流程综合原卷版docx、新高考化学三轮冲刺考前通关练习11工艺流程综合解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
新高考化学三轮冲刺考前通关练习09 电化学原理及应用(2份打包,原卷版+解析版): 这是一份新高考化学三轮冲刺考前通关练习09 电化学原理及应用(2份打包,原卷版+解析版),文件包含新高考化学三轮冲刺考前通关练习09电化学原理及应用原卷版docx、新高考化学三轮冲刺考前通关练习09电化学原理及应用解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。