2024-2025学年广东省清远市阳山县数学九年级第一学期开学教学质量检测试题【含答案】
展开这是一份2024-2025学年广东省清远市阳山县数学九年级第一学期开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )
A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<0
2、(4分)如果一个多边形的内角和是外角和的3倍,那么这个多边形是( )
A.四边形B.六边形C.八边形D.十边形
3、(4分)下列命题中是正确的命题为
A.有两边相等的平行四边形是菱形
B.有一个角是直角的四边形是矩形
C.四个角相等的菱形是正方形
D.两条对角线互相垂直且相等的四边形是平行四边形
4、(4分)ABCD是一块正方形场地,小华和小萌在AB上取一点E,测量得,,这块场地的对角线长是( )
A.10B.30C.40D.50
5、(4分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为( )
A.x(x+1)=1056B.x(x-1)=1056C.x(x+1)=1056×2D.x(x-1)=1056×2
6、(4分)如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是( )
A.16B.15C.14D.13
7、(4分)若,则的取值范围是( )
A.B.C.D.
8、(4分)如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是( )
A.8cmB.4cmC.3cmD.6cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形中,,点在边上,且.将沿对折至,延长交边于点.连结、.下列结论:①;②;③是正三角形;④的面积为1.其中正确的是______(填所有正确答案的序号).
10、(4分)一次函数y= -2x+4的图象与坐标轴所围成的三角形面积是 _____.
11、(4分)如图,已知正方形ABCD,点E在AB上,点F在BC的延长线上,将正方形ABCD沿直线EF翻折,使点B刚好落在AD边上的点G处,连接GF交CD于点H,连接BH,若AG=4,DH=6,则BH=_____.
12、(4分)一次函数y=-2x+1上有两个点A,B,且A(-2,m),B(1,n),则m,n的大小关系为m_____n
13、(4分)有一块田地的形状和尺寸如图,则它的面积为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系 中,直线 与 轴,轴分别交于点 ,点 。
(1)求点和点的坐标;
(2)若点 在 轴上,且 求点的坐标。
(3)在轴是否存在点 ,使三角形 是等腰三角形,若存在。请求出点坐标,若不存在,请说明理由。
15、(8分)当在什么范围内取值时,关于的一元一次方程的解满足?
16、(8分)如图,直线l1过点A(0,4),点D(4,0),直线l2:与x轴交于点C,两直线,相交于点B.
(1)求直线的解析式和点B的坐标;
(2)求△ABC的面积.
17、(10分)在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?
18、(10分)某老师计算学生的学期总评成绩时按照如下的标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.小东和小华的成绩如下表所示:
请你通过计算回答:小东和小华的学期总评成绩谁较高?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知关于 的方程,如果设,那么原方程化为关于的方程是____.
20、(4分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图5中挖去三角形的个数为______
21、(4分)如图,已知,,,当时,______.
22、(4分)《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x尺,可列方程为_____.
23、(4分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在四边形中,,点为的中点.
(1)求证:四边形是菱形;
(2)联结,如果平分, 求的长.
25、(10分)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排名工人制造甲种零件,其余工人制造乙种零件,且生产乙种零件的个数不超过甲种零件个数的一半.
(1)请写出此车间每天所获利润(元)与(人)之间的函数关系式;
(2)求自变量的取值范围;
(3)怎样安排生产每天获得的利润最大,最大利润是多少?
26、(12分)如图,在△ABC中,点D,E分别是边BC,AC上的中点,连接DE,并延长DE至点F,使EF=ED,连接AD,AF,BF,CF,线段AD与BF相交于点O,过点D作DG⊥BF,垂足为点G.
(1)求证:四边形ABDF是平行四边形;
(2)当时,试判断四边形ADCF的形状,并说明理由;
(3)若∠CBF=2∠ABF,求证:AF=2OG.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,
∴k<0,b>0,
故选B.
考点:一次函数的性质和图象
2、C
【解析】
设这个多边形是n边形,根据题意得:(n–2)•110°=3×360°,解得:n=1.故选C.
3、C
【解析】
根据选项逐个判断是否正确即可.
【详解】
A 错误,应该是要两条邻边相等的平行四边形是菱形.
B 错误,直角梯形有一个角是直角,但不是矩形.
C 正确.
D 错误,因为等腰梯形也有两条对角线相等且垂直.
故选C.
本题主要考查命题是否正确,关键在于举出反例.
4、C
【解析】
根据勾股定理求出BC长,由正方形的性质可得对角线长.
【详解】
解:由正方形ABCD可知:
在直角三角形EBC中,根据勾股定理得:
,则,
在直角三角形ABC中,根据勾股定理得:
所以这块场地对角线长为40.
故选:C
本题考查了勾股定理,灵活应用勾股定理求线段长是解题的关键.
5、B
【解析】
如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名同学,那么总共送的张数应该是x(x-1)张,即可列出方程.
【详解】
解:∵全班有x名同学,
∴每名同学要送出(x-1)张;
又∵是互送照片,
∴总共送的张数应该是x(x-1)=1.
故选:B.
本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.
6、B
【解析】
根据平行四边形性质得出AD=BC=6,AB=CD=5,OA=OC,AD∥BC,推出∠EAO=∠FCO,证△AEO≌△CFO,推出AE=CF,OE=OF=2,求出DE+CF=DE+AE=AD=6,即可求出答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC=6,AB=CD=5,OA=OC,AD∥BC,
∴∠EAO=∠FCO,
在△AEO和△CFO中,
,
∴△AEO≌△CFO(ASA),
∴AE=CF,OE=OF=2,
∴DE+CF=DE+AE=AD=6,
∴四边形EFCD的周长是EF+FC+CD+DE=2+2+6+5=1.
故选B.
本题考查平行四边形性质,全等三角形的性质和判定的应用,解题的关键是求出DE+CF的长和求出OF长.
7、D
【解析】
根据分式的概念可知使分式有意义的条件为a≠0,根据二次根式被开方数大于等于0可知,使该等式成立的条件为a>0且1-a≥0,故a的取值范围是0<a≤1.
【详解】
解:∵,
∴,
∴,
故选:D.
本题主要考査二次根式的概念和分式的概念,需注意在任何时候都要考虑分母不为0,这也是本题最容易出错的地方.
8、A
【解析】
首先根据菱形的性质可得BO=DO,AC⊥DB,AO=CO,然后再根据勾股定理计算出AO长,进而得到答案.
【详解】
解:∵四边形ABCD是菱形,
∴BO=DO,AC⊥DB,AO=CO,
∵BD=6cm,
∴BO=3cm,
∵AB=5cm,
∴AO==4(cm),
∴AC=2AO=8cm.
故选:A.
本题考查菱形的性质,要注意菱形的对角线互相垂直,有直角即可用勾股定理求某些边的长.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①②④
【解析】
①根据折叠的性质可以得到∠B=∠AFG=1°,AB=AF,AG=AG,根据HL定理即可证明两三角形全等;
②不妨设BG=FG=x,(x>0),则CG=30-x,EG=10+x,在Rt△CEG中,利用勾股定理即可列方程求得;
③利用②得出的结果,结合折叠的性质求得答案即可;
④根据三角形的面积公式可得:S△FGC=S△EGC,即可求解.
【详解】
解:如图:
在正方形ABCD中,AD=AB,∠D=∠B=∠C=1°,
又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G
∴∠AFG=∠AFE=∠D=1°,AF=AD,
即有∠B=∠AFG=1°,AB=AF,AG=AG,
在直角△ABG和直角△AFG中,
AB=AF,AG=AG,
∴△ABG≌△AFG;正确.
∵AB=30,点E在边CD上,且CD=3DE,
∴DE=FE=10,CE=20,
不妨设BG=FG=x,(x>0),
则CG=30-x,EG=10+x,
在Rt△CEG中,(10+x)2=202+(30-x)2
解得x=15,于是BG=GC=15;正确.
∵BG=GF=CG,
∴△CFG是等腰三角形,
∵BG=AB,
∴∠AGB≠60°,
则∠FGC≠60°,
∴△CFG不是正三角形.错误.
∵,
∴,
∴S△FGC=S△EGC=××20×15=1.正确.
正确的结论有①②④.
故答案为:①②④.
本题考查了正方形的性质,以及图形的折叠的性质,三角形全等的证明,理解折叠的性质是关键.
10、4
【解析】
【分析】结合一次函数y=-2x+4的图象可以求出图象与x轴的交点为(2,0),以及与y轴的交点为(0,4),可求得图象与坐标轴所围成的三角形的面积.
【详解】令y=0,则x=2;令x=0,则y=4,
∴一次函数y=-2x+4的图象与x轴的交点为(2,0),与y轴的交点为(0,4).
∴S=.
故正确答案为4.
【点睛】本题考查了一次函数图象与坐标轴的交点坐标.关键令y=0,可求直线与x轴的交点坐标;令x=0,可求直线与y轴的交点坐标.
11、6
【解析】
通过证明△AEG∽△DGH,可得=,可设AE=2a,GD=3a,可求GE的长,由AB=AD,列出方程可求a的值,由勾股定理可求BH的长.
【详解】
解:∵将正方形ABCD沿直线EF翻折,使点B刚好落在AD边上的点G处,
∴AB=AD=BC=CD,EG=BE,∠ABC=∠EGH=90°
∵∠AGE+∠DGH=90°,∠AGE+∠AEG=90°
∴∠AEG=∠DGH,且∠A=∠D=90°
∴△AEG∽△DGH
∴=
∴设AE=2a,GD=3a,
∴GE==
∵AB=AD
∴2a+=4+3a
∴a=
∴AB=AD=BC=CD=12,
∴CH=CD﹣DH=12﹣6=6
∴BH==6
故答案为:6.
本题考查了翻折变换,正方形的性质,相似三角形的判定和性质,勾股定理,利用参数列出方程是本题的关键.
12、>
【解析】
根据一次函数增减性的性质即可解答.
【详解】
∵一次函数y=-2x+1中,-2<0,
∴y随x的增大而减小,
∵A(-2,m),B(1,n)在y=-2x+1的图象上,-2<1,
∴m>n.
故答案为:>.
本题考查了一次函数的性质,熟练运用一次函数的性质是解决问题的关键.
13、1.
【解析】
先连接AC,求出AC的长,再判断出△ABC的形状,继而根据三角形面积公式进行求解即可.
【详解】
连接AC,
∵△ACD是直角三角形,
∴,
因为102+122=132,所以△ABC是直角三角形,
则要求的面积即是两个直角三角形的面积差,
即×24×10-×6×8
=120-24
=1,
故答案为:1.
本题考查了勾股定理及其逆定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);(3)在 轴上存在点 使为等腰三角形
【解析】
(1)分别代入y=0,x=0,求出与之对应的x,y值,进而可得出点A,B的坐标;
(2)由三角形的面积公式结合S△BOP= S△AOB,可得出OP=OA,进而可得出点P的坐标;
(3)由OA,OB的长可求出AB的长,分AB=AM,BA=BM,MA=MB三种情况,利用等腰三角形的性质可求出点M的坐标.
【详解】
解:(1)当y=0时,-2x+4=0,解得:x=2,
∴点A的坐标为(2,0);
当x=0时,y=-2x+4=4,
∴点B的坐标为(0,4).
(2))∵点P在x轴上,且S△BOP= S△AOB,
∴OP=OA=1,
∴点P的坐标为(-1,0)或(1,0).
(3))∵OB=4,OA=2,
∴AB=
分三种情况考虑(如图所示):
①当AB=AM时,OM=OB=4,
∴点M1的坐标为(0,-4);
②当BA=BM时,BM=2,
∴点M2的坐标为(0,4+2 ),点M3的坐标为(0,4-2);
③当MA=MB时,设OM=a,则BM=AM=4-a,
∴AM2=OM2+OA2,即(4-a)2=a2+22,
∴a=,
∴点M4的坐标为(0,).
综上所述:在y轴上存在点M,使三角形MAB是等腰三角形,点M坐标为(0,-4),(0,4+2),(0,4-2)和(0,).
本题考查一次函数图象上点的坐标特征、三角形的面积、勾股定理以及等腰三角形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B的坐标;(2)利用两三角形面积间的关系,找出OP的长;(3)分AB=AM,BA=BM,MA=MB三种情况,利用等腰三角形的性质求出点M的坐标.
15、
【解析】
先求出方程的解,根据已知方程的解取值范围列出不等式组,再求出不等式组的解集即可.
【详解】
解:解方程得:,
关于的一元一次方程的解满足,
,
解得:,
所以当时,关于的一元一次方程的解满足.
本题考查了解一元一次方程和解一元一次不等式组,根据方程的解取值范围得出关于的不等式组是解此题的关键.
16、(1)直线的解析式为y=-x+1,点B的坐标为(2,2);(2).
【解析】
分析:(1)根据题意l1经过A、B两点,又直线的解析式为y=ax+b,代入可得a、b的值.
(2)由图可知△ACB的面积为△ACD与△CBD的差,所以求得△ACD与△BCD的面积即可知△ACB的面积.
详解:(1)设l1的解析式为:y=ax+b.
∵l1经过A(0,1),D(1,0),
∴将A、D代入解析式得:b=1,1a+b=0,
∴a=﹣1,b=1.
即l1的解析式为:y=﹣x+1,
l1与l2联立,得:B(2,2);
(2)C是l2与x轴的交点,在y=x+1中所以令y=0,得:C(﹣2,0),
∴|CD|=3,|AO|=1,B到x轴的距离为2.
∵AO⊥CD,
∴△ACD的面积为|AO|•|CD|=×1×3=12 ,
△CBD的面积为×B到x轴的距离×CD=×2×3=3 ,
∴△ABC的面积=△ACD的面积-△CBD的面积=3.
点睛:本题考查的是一次函数图象的性质,以及待定系数法确定函数解析式,类似的题一定要注意数形结合.
17、(1)甲、乙两队单独完成这取工程各需60,90天;(2)甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.
【解析】
(1)根据题意列方程求解;
(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率得到乙队的施工天数,令施工总费用为w万元,求出w与m的函数解析式,根据m的取值范围以及一次函数的性质求解即可.
【详解】
(1)设甲、乙两队单独完成这取工程各需2x,3x天,
由题意得:,
解得:,
经检验:是原方程的根,
∴,,
答:甲、乙两队单独完成这取工程各需60,90天;
(2)由题意得:,
令施工总费用为w万元,则.
∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,
∴,,
∴,
∴当时,完成此项工程总费用最少,此时,元,
答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.
本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.
18、小东的学期总评成绩高于小华
【解析】
根据加权平均数公式,分别求出小东和小华的学期总评分,比较得到结果.
【详解】
解:小东总评成绩为(分);
小华总评成绩为(分).
小东的学期总评成绩高于小华.
本题考查加权平均数,解题的关键是熟练掌握加权平均数.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
先根据得到,再代入原方程进行换元即可.
【详解】
由,可得
∴原方程化为3y+
故答案为:3y+.
本题主要考查了换元法解分式方程,换元的实质是转化,将复杂问题简单化.常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,用一个字母来代替它可以简化问题,有时候要通过变形才能换元.
20、1
【解析】
根据题意找出图形的变化规律,根据规律计算即可.
【详解】
解:图1挖去中间的1个小三角形,
图2挖去中间的(1+3)个小三角形,
图3挖去中间的(1+3+32)个小三角形,
…
则图5挖去中间的(1+3+32+33+34)个小三角形,即图5挖去中间的1个小三角形,
故答案为1.
本题考查的是图形的变化,掌握图形的变化规律是解题的关键.
21、1或
【解析】
求出直线AB的解析式,设直线x=2交直线AB于点E,可得,再根据三角形面积公式列出方程求解即可.
【详解】
解:如图,
∵A(0,2),B(6,0),
∴直线AB的解析式为
设直线x=2交直线AB于点E,则可得到,
由题意:
解得m=1或
故答案为:1或
本题考查了坐标与图形的性质,解题的关键是学会构建一次函数解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
22、(x﹣3)2+64=x2
【解析】
设绳索长为x尺,根据勾股定理列出方程解答即可
【详解】
解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,
故答案为:(x﹣3)2+64=x2
本题考查了勾股定理在实际生活中的应用,找出等量关系,正确列出一元二次方程是解题的关键.
23、2.
【解析】
根据题意可证△ADE≌△ACD,可得AE=AC=2,CD=DE,根据勾股定理可得DE,CD的长,再根据勾股定理可得FC的长,即可求△FCD的面积.
【详解】
∵AD是∠BAC的平分线,DE⊥AB于E,∠C=90°
∴CD=DE
∵CD=DE,AD=AD
∴Rt△ACD≌Rt△ADE
∴AE=AC
∵在Rt△ABC中,AC==2
∴AE=2
∴BE=AB-AE=4
∵在Rt△DEB中,BD1=DE1+BE1.
∴DE1+12=(8-DE)1
∴DE=3 即BD=5,CD=3
∵BD=DF
∴DF=5
在Rt△DCF中,FC==4
∴△FCD的面积为=×FC×CD=2
故答案为2.
本题考查了全等三角形的性质和判定,角平分线的性质,勾股定理,关键是灵活运用这些性质解决问题.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)2
【解析】
(1)根据菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,据此判断即可.
(2)此题有两种解决方法,方法一:证明四边形是等腰梯形,方法二:证明∠BDC为直角.
【详解】
(1)证明:,点为的中点,
,
又四边形是平行四边形
,四边形是菱形
(2)解:方法一四边形是梯形.
平分
四边形是菱形,.
四边形是等腰梯形,
方法二:平分
,即,
四边形是菱形,
,即,
此题考查菱形的判定与性质,解题关键在于结结合题意运用菱形的判定与性质即可.
25、(1);(2)(3)安排13人生产甲种零件,安排7人生产乙种零件,所获利润最大,最大利润为20800元.
【解析】
(1)整个车间所获利润=甲种零件所获总利润+乙种零件所获总利润;
(2)根据零件零件个数均为非负整数以及乙种零件的个数不超过甲种零件个数的一半可得自变量的取值范围;
(3)根据(1)得到的函数关系式可得当x取最小整数值时所获利润最大.
解答
【详解】
解:(1)此车间每天所获利润(元)与(人)之间的函数关系式是
.
(2)由
解得
因为为整数,所以
(3)随的增大而减小,
当时,.
即安排13人生产甲种零件,安排7人生产乙种零件,所获利润最大,最大利润为20800元.
本题考查一次函数的性质、一元一次不等式组的应用和一次函数的应用,解题的关键是熟练掌握一次函数的性质、一元一次不等式组的应用和一次函数的应用.
26、 (1)证明见解析;(2)四边形ADCF是矩形,理由见解析;(3)证明见解析.
【解析】
(1)欲证明四边形ABDF是平行四边形,只要证明AF∥BD,AF=BD即可.
(2)结论:四边形ADCF是矩形,只要证明∠DAF=90°即可.
(3)作AM⊥DG 于M,连接BM,先证明AM=2OG,再证明AM=AF即可解决问题.
【详解】
(1)证明:∵点D,E分别是边BC,AC上的中点,
∴ED∥AB,AE=CE,
∵EF=ED,
∴四边形ADCF是平行四边形,
∴AF∥BC,
∴四边形ABDF是平行四边形;
(2)四边形ADCF是矩形.
理由:∵AE=DF,EF=ED,
∴AE=EF=DE,
∴∠EAF=∠AFE,∠DAE=∠ADE,
∴∠DAF=∠EAF+∠EAD=×180°=90°,
由(1)知:四边形ADCF是平行四边形;
∴四边形ADCF是矩形;
(3)证明:作AM⊥DG 于M,连接BM.
∵四边形ABDF是平行四边形,
∴OA=OD,∵OG∥AM,
∴GM=GD,
∴AM=2OG,
∵BG⊥DM,GM=GD,
∴BM=BD,
∴∠CBF=∠MBG,
∵∠CBF=2∠ABF,
∴∠ABM=∠ABF,
∵AM∥BF,
∴∠MAB=∠ABF,
∴∠MAB=∠MBA,
∴AM=BM=BD=AF=2OG,
∴AF=2OG.
本题考查四边形综合题、平行四边形的判定和性质、矩形的判定和性质、三角形中位线定理等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线.
题号
一
二
三
四
五
总分
得分
学生
平时成绩
期中成绩
期末成绩
小东
70
80
90
小华
90
70
80
相关试卷
这是一份2024-2025学年广东省惠来县九上数学开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省清远市清城区九年级(上)开学数学试卷(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省清远市清城区2024-2025学年九年级上学期开学考试数学试题(解析版),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。