2024-2025学年广东省深圳市龙岗区石芽岭学校九上数学开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn0)的大致图像是( )
A.B.
C.D.
2、(4分)已知一次函数,若y随着x的增大而增大,且它的图象与y轴交于负半轴,则直线的大致图象是( )
A.B.C.D.
3、(4分)二十一世纪,纳米技术将被广泛应用,纳米是长度计量单位,1 纳米=0.000000001 米, 则 5 纳米可以用科学记数法表示为( )
A.米B.米C. 米D. 米
4、(4分)下列等式不一定成立的是( )
A.B.
C.D.
5、(4分)函数y=中,自变量x的取值范围是( )
A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0
6、(4分)对于一次函数y=(k﹣3)x+2,y随x的增大而增大,k的取值范围是( )
A.k<0B.k>0C.k<3D.k>3
7、(4分)如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC于点D、E,则以下AE与CE的数量关系正确的是( )
A.AE=CEB.AE=CEC.AE=CED.AE=2CE
8、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有( )
A.2个B.3个C.4个D.1个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,,请写出图中一对相等的角:______;
要使成立,需再添加的一个条件为:______.
10、(4分)一次跳远中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有____人.
11、(4分)如图,在平行四边形ABCD中,BC=8cm,AB=6cm,BE平分∠ABC交AD边于点E,则线段DE的长度为_____.
12、(4分)若分式的值为0,则的值是 _____.
13、(4分)已知如图,以的三边为斜边分别向外作等腰直角三角形,若斜边,则图中阴影部分的面积为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正比例函数的图象与一次函数的图象交于点,一次函数图象经过点,与轴的交点为,与轴的交点为.
(1)求一次函数解析式;
(2)求点的坐标.
15、(8分)已知,直线与双曲线交于点,点.
(1)求反比例函数的表达式;
(2)根据图象直接写出不等式的解集 .
(3)将直线沿轴向下平移后,分别与轴,轴交于点,点,当四边形为平行四边形时,求直线的表达式.
16、(8分)问题背景:对于形如这样的二次三项式,可以直接用完全平方公式将它分解成,对于二次三项式,就不能直接用完全平方公式分解因式了.此时常采用将加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:
=
====
问题解决:
(1)请你按照上面的方法分解因式:;
(2)已知一个长方形的面积为,长为,求这个长方形的宽.
17、(10分)如图,在中,,,,.
求的周长;
判断是否是直角三角形,并说明理由.
18、(10分)西蜀图书室近日购进甲、乙两种图书,每本甲图书的进价比每本乙图书的进价高20元,花780元购进甲图书的数量与花540元购进乙图书的数量相同.
(1)求甲、乙两种图书每本的进价分别是多少元?
(2)西蜀图书室计划购进甲、乙两种图书共70本,总购书费用不超过4000元,则最多购进甲种图书多少本?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果最简二次根式与最简二次根式同类二次根式,则x=_______.
20、(4分)如图,在平面直角坐标系中,点A为,点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数的图象经过点C和AB的中点D,反比例函数图象经过点B,则的值为______.
21、(4分)不等式4x﹣6≥7x﹣15的正整数解的个数是______.
22、(4分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办了“玩转数学”比赛.评委从研究报告、小组展示、答辩三个方面为每个参赛小组打分,按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,各项成绩均按百分制记录.甲小组的研究报告得85分,小组展示得90分,答辩得80分,则甲小组的参赛成绩为_____.
23、(4分) “I am a gd student.”这句话的所有字母中,字母“a”出现的频率是______
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,▱ABCD中,AC为对角线,G为CD的中点,连接AG并廷长交BC的延长线于点F,连接DF,求证:四边形ACFD为平行四边形.
25、(10分)(1)--;(2)
26、(12分)如图1,在6×6的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.△ABC的顶点在格点上.点D是BC的中点,连接AD.
(1)在图2、图3两个网格图中各画出一个与△ABC相似的三角形,要求所画三角形的顶点在格点上,相似比各不相同,且与△ABC的相似比不为1;
(2)tan∠CAD= .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一次函数图像与系数的关系以及正比例函数图像与系数的关系逐一对各选项进行判断,然后进一步得出答案即可.
【详解】
A:由一次函数图像可知:m>0,n>0,则mn>0,由正比例函数图像可得:mn<0,互相矛盾,故该选项错误;
B:由一次函数图像可知:m>0,n<0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;
C:由一次函数图像可知:m﹤0,n>0,则此时mn﹤0,由正比例函数图像可得:mn<0,故该选项正确;
D:由一次函数图像可知:m﹤0,n﹥0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;
故选:C.
本题主要考查了正比例函数图像以及一次函数图像与系数的关系,熟练掌握相关概念是解题关键.
2、D
【解析】
一次函数y=(1-k)x+k中y随x的增大而增大,且与y轴负半轴相交,即可确定k的符号,即可求解.
【详解】
解:∵一次函数y=(1-k)x+k中y随x的增大而增大,
∴1-k>0,
∴k<1
∵一次函数y=(1-k)x+k与y轴负半轴相交,
∴k<0,
∴综合上述得:k<0,
∴直线y=kx+k的大致图象如图:
故选:D.
此题主要考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
3、C
【解析】
试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
解:5纳米=5×10﹣9,
故选C.
【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4、B
【解析】
直接利用二次根式的性质分别化简的得出答案.
【详解】
A.()2=5,正确,不合题意;
B.(a≥0,b≥0),故此选项错误,符合题意;
C.π﹣3,正确,不合题意;
D.,正确,不合题意.
故选B.
本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.
5、B
【解析】
试题分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.
解:由题意得,x﹣1≥0且x≠0,
∴x≥1.
故选:B.
6、D
【解析】
一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.
【详解】
∵一次函数,随的增大而增大,
∴k-3>0,
解得:k>3,
故选D.
本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,熟练掌握一次函数的性质是解题关键.
7、D
【解析】
首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.
【详解】
连接BE,
∵DE是AB的垂直平分线,
∴AE=BE,
∴∠ABE=∠A=30°,
∴∠CBE=∠ABC-∠ABE=30°,
在Rt△BCE中,BE=2CE,
∴AE=2CE,
故选D.
此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
8、B
【解析】
根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.
【详解】
∵AD平分∠BAC
∴∠DAC=∠DAE
∵∠C=90°,DE⊥AB
∴∠C=∠E=90°
∵AD=AD
∴△DAC≌△DAE
∴∠CDA=∠EDA
∴①AD平分∠CDE正确;
无法证明∠BDE=60°,
∴③DE平分∠ADB错误;
∵BE+AE=AB,AE=AC
∴BE+AC=AB
∴④BE+AC=AB正确;
∵∠BDE=90°-∠B,∠BAC=90°-∠B
∴∠BDE=∠BAC
∴②∠BAC=∠BDE正确.
故选:B.
考查了角平分线的性质,解题关键是灵活运用其性质进行分析.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(答案不唯一) ∠2=∠3(答案不唯一)
【解析】
根据平行线的性质进行解答即可得答案.
【详解】
解:如图,AB//CD,请写出图中一对相等的角:答案不唯一:∠2=∠A,或∠3=∠B;
要使∠A=∠B成立,需再添加的一个条件为:∠2=∠B或∠3=∠A或∠2=∠3,或CD是∠ACE的平分线.
故答案为:∠2=∠A(答案不唯一):∠2=∠3(答案不唯一).
本题考查了平行线的性质,正确运用数形结合思想进行分析是解题的关键.
10、20
【解析】
根据频率的计算公式即可得到答案.
【详解】
解:
所以可得参加比赛的人数为20人.
故答案为20.
本题主要考查频率的计算公式,这是数据统计的重点知识,必须掌握.
11、2cm.
【解析】
试题解析:∵四边形ABCD为平行四边形,
∴AE∥BC,AD=BC=8cm,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AB=AE=6cm,
∴DE=AD﹣AE=8﹣6=2(cm).
12、1
【解析】
分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.
【详解】
∵分式的值为0,
∴,
∴x=1.
故答案是:1.
考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.
13、50
【解析】
根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.
【详解】
解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
S阴影=S△AHC+S△BFC+S△AEB=
=50
故答案为:50.
本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)点的坐标为
【解析】
(1)将代入中即可求解;
(2)联立两函数即可求解.
【详解】
解:(1)将代入中,得:
,
∴
(2)联立,得
∴点的坐标为
此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.
15、(1);(2)或;(3),
【解析】
(1)将点A代入直线解析式即可得出其坐标,再代入反比例函数解析式,即可得解;
(2)首先联立两个函数,解得即可得出点B坐标,直接观察图像,即可得出解集;
(3)首先过点作轴,过点作轴,交于点,根据平行线的性质,得出,得出,进而得出直线CD解析式.
【详解】
解:(1)根据题意,可得点
将其代入反比例函数解析式,即得
(2)根据题意,得
解得
∴点B(4,-2)
∴直接观察图像,可得的解集为
或
(3)过点作轴,过点作轴,交于点
根据题意,可得
∴∠EAB=∠NOB=∠OCD,∠AEB=∠COD=90°,AB=CD
∴∠ABE=∠CDO
∴(ASA)
∴
则可得出直线CD为
此题主要考查一次函数、反比例函数和平行四边形的综合应用,熟练运用,即可解题.
16、(1); (2)长为时这个长方形的宽为
【解析】
按照原题解题方法,进而借助完全平方公式以及平方差公式分解因式得出即可.
【详解】
(1)
=
=
=
=
=
(2) ∵
=
=
∴长为时这个长方形的宽为.
17、(1)54;(2)不是直角三角形,理由见解析.
【解析】
(1)在和中,利用勾股定理分别求得AB与AC的长即可;
(2)利用勾股定理的逆定理进行判断即可.
【详解】
解:,
.
在和中,
根据勾股定理得,,
又,,,
,
;
不是直角三角形.理由:
,
,
不是直角三角形.
本题主要考查勾股定理及其逆定理,解此题的关键在于熟练掌握其知识点.
18、(1)甲种图书每本的进价为1元,乙种图书每本的进价是45元;(2)最多购进甲种图书2本.
【解析】
试题分析:(1)设乙种图书每本的进价为x元,则甲种图书每本的进价是(x+20)元,根据花780元购进甲图书的数量与花540元购进乙图书的数量相同,列方程求解;
(2)设购进甲种图书m本,则购进乙种图书为(70-m)本,根据总购书费用不超过4000元,列不等式求解.
试题解析:
解:(1)设乙种图书每本的进价为x元,则甲种图书每本的进价是(x+20)元,
由题意得, =,
解得:x=45,
经检验,x=45是原分式方程的解,且符合题意,
则x+20=1.
答:甲种图书每本的进价为1元,乙种图书每本的进价是45元;
(2)设购进甲种图书m本,则购进乙种图书为(70﹣m)本,
由题意得,1m+45(70﹣m)≤4000,
解得:m≤2.5,
∵m为整数,且取最大值,
∴m=2.
答:最多购进甲种图书2本.
点睛:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系或不等关系,列方程或不等式求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
∵最简二次根式与最简二次根式是同类二次根式,
∴x+3=1+1x,解得:x=1.当x=1时,6和是最简二次根式且是同类二次根式.
20、
【解析】
过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设C(a,b),则利用相似三角形的性质可得C(4,b),B(10,b),进而得到.
【详解】
如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,
又,
,
∽,
又是AB的中点,,
,
设,则,,
,,
,
反比例函数的图象经过点C和AB的中点D,
,
解得,
,
又,
,
,
故答案为.
本题考查了反比例函数图象上点的坐标特征以及平行四边形的性质,解题的关键是掌握:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
21、3
【解析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可
【详解】
不等式的解集是x≤3,
故不等式4x-6≥7x-15的正整数解为1,2,3
故答案为:3
此题考查一元一次不等式的整数解,掌握运算法则是解题关键
22、85分
【解析】
根据加权平均数的定义计算可得.
【详解】
根据题意知,甲小组的参赛成绩为85×40%+90×30%+80×30%=85(分),
故答案为:85分.
本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.
23、
【解析】
根据题意可知15个字母里a出现了2次,所以字母“a”出现的频率是.故答案为.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
根据平行四边形的性质证出∠ADC=∠FCD,然后再证明△ADG≌△FCG可得AD=FC,根据一组对边平行且相等的四边形是平行四边形可得结论;
【详解】
证明:∵在▱ABCD中,AD∥BF.
∴∠ADC=∠FCD.
∵G为CD的中点,
∴DG=CG.
在△ADG和△FCG中,
,
∴△ADG≌△FCG(ASA)
∴AD=FC.
又∵AD∥FC,
∴四边形ACFD是平行四边形.
此题主要考查了平行四边形的判定和性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
25、(1)- (2)
【解析】
【分析】(1)把每一个二次根式都化成最简二次根式,然后再对同类二次根式进行合并即可得;
(2)根据二次根式乘除法的法则进行计算即可.
【详解】(1)原式=-=- ;
(2)原式== =.
【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.
26、(1)见解析;(2).
【解析】
(1)利用相似三角形的性质结合网格特点画三角形即可;
(2)利用勾股定理结合锐角三角函数关系求出即可.
【详解】
解:(1)如图所示:△EMF和△A′B′C′即为所求;
(2)由图1可知∠ACB=90°,DC=,AC=,
∴tan∠CAD=.
故答案为:.
本题主要考查了相似三角形的性质及锐角三角函数的定义,利用相似三角形的判定方法画出图形是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
广东省深圳市龙岗区石芽岭学校2023-2024学年数学九上期末质量检测模拟试题含答案: 这是一份广东省深圳市龙岗区石芽岭学校2023-2024学年数学九上期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法不正确的是,下列函数属于二次函数的是,点A所在的象限是等内容,欢迎下载使用。
2023-2024学年广东省深圳市龙岗区石芽岭学校数学九年级第一学期期末达标检测试题含答案: 这是一份2023-2024学年广东省深圳市龙岗区石芽岭学校数学九年级第一学期期末达标检测试题含答案,共9页。
2023-2024学年广东省深圳市龙岗区石芽岭学校八年级数学第一学期期末复习检测模拟试题含答案: 这是一份2023-2024学年广东省深圳市龙岗区石芽岭学校八年级数学第一学期期末复习检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。