


2024-2025学年广西桂林市宝贤中学数学九上开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BCB.∠ABC=90°C.AC⊥BDD.∠1=∠2
2、(4分)如果点在第四象限,那么m的取值范围是( ).
A.B.C.D.
3、(4分)如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是( )
A.2B.4C.8D.16
4、(4分)若分式的值为0,则x的值为( )
A.0B.-1C.1D.2
5、(4分)目前,随着制造技术的不断发展,手机芯片制造即将进入(纳米)制程时代.已知,则用科学记数法表示为( )
A.B.C.D.
6、(4分)如图1,在▱ABCD中,对角线AC,BD相交于点0,添加下列条件后,能使▱ABCD成为矩形的是( )
A.AB=ADB.AC=BDC.BD平分∠ABCD.AC⊥BD
7、(4分)下列方程中,有实数解的方程是( )
A.;B.;
C.;D.
8、(4分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( )
A.25和30B.25和29C.28和30D.28和29
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知某汽车油箱中的剩余油量(升)是该汽车行驶时间(小时)的一次函数,其关系如下表:
由此可知,汽车行驶了__________小时, 油箱中的剩余油量为升.
10、(4分)若,则a2﹣6a﹣2的值为_____.
11、(4分)如图,矩形中,,延长交于点,延长交于点,过点作,交的延长线于点,,则=_________.
12、(4分)如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为______.
13、(4分)若关于x的分式方程有增根,则m的值为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,直线与轴、轴分别交于点D、C,直线AB与轴交于点,与直线CD交于点.
(1)求直线AB的解析式;
(2)点E是射线CD上一动点,过点E作轴,交直线AB于点F,若以、、、为顶点的四边形是平行四边形,请求出点E的坐标;
(3)设P是射线CD上一动点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出符合条件的点Q的个数及其中一个点Q的坐标;否则说明理由.
15、(8分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.
(1)请依据图表中的数据,求a,b的值.
(2)直接写出表中的m= ,n= .
(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.
16、(8分)如图1,点是菱形对角线的交点,已知菱形的边长为12,.
(1)求的长;
(2)如图2,点是菱形边上的动点,连结并延长交对边于点,将射线绕点顺时针旋转交菱形于点,延长交对边于点.
①求证:四边形是平行四边形;
②若动点从点出发,以每秒1个单位长度沿的方向在和上运动,设点运动的时间为,当为何值时,四边形为矩形.
17、(10分)先观察下列等式,再回答问题:
① =1+1=2;
②=2+ =2 ;
③=3+=3;…
(1)根据上面三个等式提供的信息,请猜想第四个等式;
(2)请按照上面各等式规律,试写出用 n(n 为正整数)表示的等式,并用所学知识证明.
18、(10分)已知一个三角形的三边长分别为,求这个三角形的周长(要求结果化简).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)20190=__________.
20、(4分)函数自变量的取值范围是______.
21、(4分)使二次根式有意义的x的取值范围是_____.
22、(4分)已知,,则______.
23、(4分)将直线平移,使之经过点,则平移后的直线是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某学校抽查了某班级某月10天的用电量,数据如下表:
(1)这10天用电量的众数是______度,中位数是______度;
(2)求这个班级平均每天的用电量;
(3)该校共有20个班级,该月共计30天,试估计该校该月总的用电量.
25、(10分)已知一次函数y=(2m+1)x+m﹣3
(1)若函数图象经过原点,求m的值;
(2)若函数图象与y轴的交点坐标为(0,﹣2),求m的值;
(3)若y随着x的增大而增大,求m的取值范图;
(4)若函数图象经过第一、三,四象限,求m的取值范围.
26、(12分)如图,已知中,,的垂直平分线交于,交于,若,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据一个角是90度的平行四边形是矩形进行选择即可.
【详解】
解:A、是邻边相等,可判定平行四边形ABCD是菱形;
B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
故选:B.
本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
2、D
【解析】
横坐标为正,纵坐标为负,在第四象限.
【详解】
解:∵点p(m,1-2m)在第四象限,
∴m>0,1-2m<0,解得:m>,故选D.
坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.
3、A
【解析】
解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为,新数据是在原来每个数上加上100得到,则新平均数变为+100,则每个数都加了100,原来的方差s12= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,现在的方差s22= [(x1+100﹣﹣100)2+(x2+100﹣﹣100)2+…+(xn+100﹣﹣100)2]= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]=2,方差不变.
故选:A.
方差的计算公式:s2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2]
4、B
【解析】
解:依题意得,x+1=2,
解得x=-1.
当x=-1时,分母x+2≠2,
即x=-1符合题意.
故选B.
若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.
5、B
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:,
.
故选:.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6、B
【解析】
根据矩形的判定方法逐一进行分析即可.
【详解】
A. 若添加AB=AD,根据有一组邻边相等的平行四边形是菱形,可判断四边形ABCD为菱形,故不符合题意;
B.若添加AC=BD,根据对角线相等的平行四边形是矩形,可判断四边形ABCD是矩形,故符合题意;
C.若添加BD平分∠ABC,则有∠ABD=∠DBC,∵平行四边形ABCD中,AB//CD,∴∠ABD=∠CDB,∴∠DBC=∠CDB,∴BC=DC,∴平行四边形ABCD是菱形,故不符合题意;
D. 若添加AC⊥BD,根据对角线互相垂直的平行四边形是菱形,可判断四边形ABCD是菱形,故不符合题意,
故选B.
本题考查了矩形的判定,菱形的判定,熟练掌握相关的判定定理是解题的关键.
7、B
【解析】
首先对每一项的方程判断有无实数解,就是看方程的解是否存在能满足方程的左右两边相等的实数.一元二次方程要有实数根,则△≥0;算术平方根不能为负数;分式方程化简后求出的根要满足原方程.
【详解】
解:A项移项得:,等式不成立,所以原方程没有实数解,故本选项错误;
B项移项得,存在实数x使等式成立;所以原方程有实数解,故本选项符合题意;
C项是一元二次方程,△==-15<0,方程无实数根,故本选项错误;
D. 化简分式方程后,求得x=1,检验后,x=1为增根,故原分式方程无解.故本选项错误;
故选B.
本题考查了无理方程、高次方程、分式方程的解法,二次根式的性质,属于基础知识,需熟练掌握.
8、D
【解析】
【分析】根据中位数和众数的定义进行求解即可得答案.
【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,
处于最中间是数是28,
∴这组数据的中位数是28,
在这组数据中,29出现的次数最多,
∴这组数据的众数是29,
故选D.
【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、11.5
【解析】
根据剩余油量(升)、汽车行驶时间(小时),可求出每千米用油量,根据题意可写出函数式.
【详解】
根据题意得每小时的用油量为,
∴剩余油量(升)与汽车行驶时间(小时)的函数关系式:,
当y=8时,x=11.5.
故答案为:11.5.
此题考查一次函数,解题关键在于结合实际列出一次函数关系式求解即可.
10、-1
【解析】
把a的值直接代入计算,再按二次根式的运算顺序和法则计算.
【详解】
解:当 时,
a2﹣6a﹣2=(3﹣)2﹣6(3﹣)﹣2
=19﹣6﹣18+6﹣2
=﹣1.
本题考查了实数的混合运算,解题的关键是掌握实数的运算法则.
11、
【解析】
通过四边形ABCD是矩形以及,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.
【详解】
解:如图,设NE交AD于点K,
∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°,
∴∠MFE=∠FCB,∠FME=∠EBC
∵,
∴△BCE为等边三角形,
∴∠BEC=∠ECB=∠EBC=60°,
∵∠FEM=∠BEC,
∴∠FEM=∠MFE=∠FME=60°,
∴△FEM是等边三角形,FM=FE=EM=2,
∵EN⊥BE,
∴∠NEM=∠NEB=90°,
∴∠NKA=∠MKE=30°,
∴KM=2EM=4,NK=2AN=6,
∴在Rt△KME中,KE=,
∴NE=NK+KE=6+,
∵∠ABC=90°,
∴∠ABE=30°,
∴BN=2NE=12+,
∴BE=,
∴BC=BE=,
故答案为:
本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.
12、.
【解析】
解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,
∵A、C关于BD对称,
∴当P与P′重合时,PA′+P′E的值最小,
∵菱形ABCD的周长为16,面积为8,
∴AB=BC=4,AB·CE′=8,
∴CE′=2,由此求出CE的长=2.
故答案为2.
考点:1、轴对称﹣最短问题,2、菱形的性质
13、1
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出m的值.
【详解】
解:方程两边都乘,得
∵原方程有增根,
∴最简公分母,
解得,
当时,
故m的值是1,
故答案为1
本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)点E的坐标为或;(3)符合条件的点Q共3个,坐标为(3,1),(-6,4)或
【解析】
(1)先确定出A的坐标,再利用待定系数法即可得出结论;
(2)先表示出EF=|a+4-(-2a-2)|=|3a+6|,进而建立方程|3a+6|=4,求解即可得出结论;
(3)分三种情况,利用菱形的性质和中点坐标公式即可得出结论.
【详解】
解:(1)∵点在上.
∴,解得,
即点A的坐标为(-2,2),
设直线AB的解析式为,
∴.
解得,
∴直线AB的解析式为.
(2)由题意,设点E的坐标为,则
∵轴,点F在直线上,
∴点F的坐标为,
∴,
∵以点、、、为顶点的四边形是平行四边形,且,∴.
∵直线与轴交于点,
∴点的坐标为(0,4),
∴,即,
解得:或,
∴点E的坐标为或.
(3)
如图2,当BC为对角线时,点P,Q都是BC的垂直平分线,且点P和点Q关于BC对称,
∵B(0,-2),C(0,4),
∴点P的纵坐标为1,
将y=1代入y=x+4中,得x+4=1,
∴x=-3,
∴(-3,1),
∴(3,1)
当CP是对角线时,CP是BQ的垂直平分线,设Q(m,n),
∴BQ的中点坐标为,
代入直线y=x+4中,得 ①,
∵CQ=CB,
∴②,
联立①②得,
(舍)或,
∴(-6,4),
当PB是对角线时,PC=BA=6,
设P(c,c+4),
∴,
∴(舍)或,
∴P,
设Q(d,e)
∴,
∴,
∴Q,
符合条件的点Q共3个,坐标为(3,1),(-6,4)或.
此题是一次函数综合题,主要考查了待定系数法,平行四边形的性质,菱形的性质,中点坐标公式,建立方程求解是解本题的关键.
15、(1)a=5,b=1;(2)m=6,n=20%;(3)答案见解析.
【解析】
试题分析:(1)根据题意可以得到关于a、b的方程组,从而可以求得a、b的值;
(2)根据表格可以得到m和n的值;
(3)根据表格中的平均数和中位数进行说明即可解答本题.
试题解析:解:(1)由题意和图表中的数据,可得:
,即,解得:;
(2)七年级的中位数m=6,优秀率n=2÷10=20%;
(3)八年级队成绩比七年级队好的理由:
①八年级队的平均分比七年级队高,说明八年级队总成绩比七年级队的总成绩好.
②中位数七年级队是6,八年级队是7.5,说明八年级队半数以上的学生比七年级队半数以上的成绩好.
点睛:本题考查条形统计图、中位数、方差,解题的关键是明确题意,找出所求问题需要的条件.
16、(1);(2)①见解析;②或或或.
【解析】
(1)解直角三角形求出BO即可解决问题;
(2)①想办法证明OE=OG,HO=FO即可解决问题;
②分四种情形画出图形,(Ⅰ)如图1,当时,,关于对称,(Ⅱ)如图2,当,关于对称时,,(Ⅲ)如图3,此时与图2中的的位置相同,(Ⅳ)如图4,当,关于对称时,四边形EFGH是矩形.分别求解即可解决问题;
【详解】
解:(1)∵四边形为菱形,,
∴.
∵,
∴,
∴,
∴.
(2)①∵四边形ABCD是菱形,
∴AB∥CD,BO=OD,
∴∠EBO=∠GDO
∵∠BOE=∠DOG,
∴△EOB≌△GOD,
∴EO=GO,同理可得HO=FO,
∴四边形EFGH是平行四边形.
②②I.如图2-1,当点、都在上时,四边形是矩形,作的平分线,
,
.
,
,
,作于.设,则,
,
,
,
,
时,四边形是矩形.
II.如解图2-2,当点在上,点在上,四边形是矩形.
由菱形和矩形都是轴对称图形可知,,
,
,
,
,
,
时,四边形是矩形.
III. 如解图2-3,当点、都在上时,四边形是矩形.
由同理可证:,
时,四边形是矩形.
IV. 如解图2-4,当点在上,点在上,四边形是矩形.
由菱形、矩形都是轴对称图形可知,,
,
,过点作,
,
,
,
,
,
,
时,四边形是矩形.
综上所述,为,,,时,四边形是矩形.
本题考查了四边形综合、菱形的性质、矩形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
17、(1);(2),证明见解析.
【解析】
(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;
(2)根据等式的变化,找出变化规律“n”,再利用开方即可证出结论成立.
【详解】
(1)∵①1+1=2;②22;③33;里面的数字分别为1、2、3,
∴④ .
(2)观察,发现规律:1+1=2,223344,…,∴ .
证明:等式左边=n右边.
故n成立.
本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律“n”.解决该题型题目时,根据数值的变化找出变化规律是关键.
18、.
【解析】
根据题目中的数据可以求得该三角形的周长
【详解】
解:∵这个三角形的三边长分别为: ,
∴这个三角形的周长是:=.
本题考查二次根式的性质与化简,解答本题的关键是明确二次根式的意义.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
任何不为零的数的零次方都为1.
【详解】
任何不为零的数的零次方都等于1.
=1
本题考查零指数幂,熟练掌握计算法则是解题关键.
20、
【解析】
根据分式与二次根式的性质即可求解.
【详解】
依题意得x-9>0,
解得
故填:.
此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.
21、
【解析】
试题分析:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
考点:二次根式有意义的条件.
22、-5
【解析】
根据比例的性质,把写成的形式,然后代入已知数据进行计算即可得解.
【详解】
设由已知则
故-5
本题主要考查了比例的基本性质。
23、y=2x-1.
【解析】
根据平移不改变k的值,可设平移后直线的解析式为y=2x+b,然后将点(9,3)代入即可得出平移后的直线解析式.
【详解】
设平移后直线的解析式为y=2x+b.
把(9,3)代入直线解析式得3=2×9+b,
解得b=-1.
所以平移后直线的解析式为y=2x-1.
故答案为:y=2x-1.
本题考查了一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时,k的值不变是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)13,13;(2)这个班级平均每天的用电量为12度;(3)估计该校该月总的用电量为7200度.
【解析】
(1)根据众数和中位数的定义进行求解;
(2)由加权平均数公式求之即可;
(3)用每班用电量的平均数×总班数×总天数求解.
【详解】
解:(1)用电量为13度的天数有3天,天数最多,所以众数是13度;将用电量从小到大排列,处在中间位置的用电量分别为13度,13度,所以中位数是13度.
(2)(度).
答:这个班级平均每天的用电量为12度.
(3)(度).
答:估计该校该月总的用电量为7200度.
此题考查的是统计表的综合运用.读懂统计表,从统计表中得到必要的信息是解决问题的关键.本题还考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.
25、(1)m=1;(2)m=1;(1)m>﹣0.5;(4)﹣0.5<m<1.
【解析】
(1)经过原点,则m-1=0,求得其值即可;
(2)若函数图象与y轴的交点坐标为(0,﹣2),即为m-1=-2;
(1)y随着x的增大而增大,就是,从而求得解集;
(4)函数图象经过第一、三,四象限,k>0,b≤0,求得m的取值范围即可.
【详解】
解:(1)把(0,0)代入y=(2m+1)x+m﹣1得m﹣1=0,
解得m=1;
(2)把x=0代入y=(2m+1)x+m﹣1得y=m﹣1,则直线y=(2m+1)x+m﹣1与y轴的交点坐标为(0,m﹣1),
所以m﹣1=﹣2,
解得m=1;
(1)∵y随着x的增大而增大,
∴2m+1>0,
解得:m>﹣0.5;
(4)由题意可得:
解得:
即当时函数图象经过第一、三,四象限.
考查一次函数的性质,解题的关键是熟练掌握一次函数的性质并正确的应用.
26、
【解析】
连接MA,可求得MA=2MC,在Rt△AMC中可求得MC,则可求BC,在Rt△ABC中,由勾股定理可求得AB.
【详解】
解:如图
连接,
在线段的垂直平分线上,
,
,
,即,
解得,
,
,
在中,由勾股定理可得,
即的长为.
本题考查线段垂直平分线的性质,解题的关键是熟练掌握线段垂直平分线的性质.
题号
一
二
三
四
五
总分
得分
(小时)
…
(升)
…
用电量/度
8
9
10
13
14
15
天数
1
1
2
3
1
2
2024-2025学年广西省崇左市名校数学九上开学检测模拟试题【含答案】: 这是一份2024-2025学年广西省崇左市名校数学九上开学检测模拟试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西钦州市钦南区犀牛脚中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年广西钦州市钦南区犀牛脚中学数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西柳州市柳林中学九上数学开学质量检测模拟试题【含答案】: 这是一份2024-2025学年广西柳州市柳林中学九上数学开学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。