2024-2025学年广西来宾市部分中学数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为( )
A.12B.14C.16D.24
2、(4分)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是( )
A.B.C.D.
3、(4分)若分式有意义,则满足的条件是( )
A.B.C.D.
4、(4分)若不等式组恰有两个整数解,则a的取值范围是( )
A.-1≤a<0B.-1<a≤0C.-1≤a≤0D.-1<a<0
5、(4分)已知数据:2,﹣1,3,5,6,5,则这组数据的众数和极差分别是( )
A.5和7B.6和7C.5和3D.6和3
6、(4分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:
则这四个人种成绩发挥最稳定的是( )
A.甲B.乙C.丙D.丁
7、(4分)计算的的结果是( )
A.B.C.4D.16
8、(4分)如图,已知中,,,将绕点顺时针方向旋转到的位置,连接,则的长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范围是______.
10、(4分)如图,直线与轴、轴分别交于两点,把绕点顺时针旋转后得到,则点的坐标为____.
11、(4分)计算−的结果为______
12、(4分)如图,在中,,.对角线AC与BD相交于点O,,则BD 的长为____________.
13、(4分)在直角三角形ABC中,∠B=90°,BD是AC边上的中线,∠A=30°,AB=5,则△ADB的周长为___________
三、解答题(本大题共5个小题,共48分)
14、(12分)因式分解
(1)
(2)
(3)
(4)
15、(8分)计算:
(1)
(2)
(3)
16、(8分)如图,在△ABC中,D是BC边上的一点,已知AB=13,AD=12,AC=11,BD=1.
(1)求证:AD⊥BC;
(2)求CD的长
17、(10分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:
其次,对三名候选人进行了笔试和面试两项测试.各项成绩如右表所示:图二是某同学根据上表绘制的一个不完整的条形图.请你根据以上信息解答下列问题:
(1)补全图一和图二.
(2)请计算每名候选人的得票数.
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?
18、(10分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
(1)在这个变化中,自变量、因变量分别是 、 ;
(2)当点P运动的路程x=4时,△ABP的面积为y= ;
(3)求AB的长和梯形ABCD的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.
20、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE//BD,DE//AC,若AD=5,则四边形CODE的周长______.
21、(4分)如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过 秒,四边形APQC的面积最小.
22、(4分)甲、乙两人进行射击测试,每人20次射击的平均成绩恰好相等,且他们的标准差分别是S甲=1.8,S乙=0.1.在本次射击测试中,甲、乙两人中成绩较为稳定的是_____.(填:甲或乙)
23、(4分)已知m是方程x2﹣2018x+1=0的一个根,则代数式m2﹣2017m++3的值等于_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,AB=10,AD平分∠BAC交BC于点D,若AD=8,BD=6,求AC的长.
25、(10分)如图,已知等腰三角形的底边长为10,点是上的一点,其中.
(1)求证:;
(2)求的长.
26、(12分)某区举行“中华诵经典诵读”大赛,小学、中学组根据初赛成绩,各选出5名选手组成小学代表队和中学代表队参加市级决赛,两个代表队各选出的5名选手的决赛成绩分别绘制成下列两个统计图
根据以上信息,整理分析数据如下:
(1)写出表格中,,的值: , , .
(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较稳定.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题解析:∵解方程x2-7x+12=0
得:x=3或1
∵对角线长为6,3+3=6,不能构成三角形;
∴菱形的边长为1.
∴菱形ABCD的周长为1×1=2.
故选C.
2、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,也是中心对称图形.故错误;
B、不是轴对称图形,是中心对称图形.故正确;
C、是轴对称图形,也是中心对称图形.故错误;
D、是轴对称图形,也是中心对称图形.故错误.
故选B.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3、B
【解析】
根据分式有意义的条件可得x+1≠0,再解即可.
【详解】
解:由题意得:x+1≠0,
解得:x≠-1
故选B.
本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
4、A
【解析】
首先解不等式组求得不等式组的解集,然后根据不等式组有两个整数解即可确定整数解,从而得到关于a的不等式,求得a的范围.
【详解】
,
解①得x<1,
解②得x>a-1,
则不等式组的解集是a-1<x<1.
又∵不等式组有两个整数解,
∴整数解是2,-1.
∴-2≤a-1-<-1,
解得:-1≤a<2.
故选A.
本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
5、A
【解析】
众数是一组数据中出现次数最多的数;极差就是这组数中最大值与最小值的差.
【详解】
解:这组数据的众数是5;
极差是:;
故选:A.
考查了众数和极差的概念.众数是一组数据中出现次数最多的数;极差就是这组数中最大值与最小值的差.
6、B
【解析】
方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.
【详解】
解:∵S甲2,=0.035,S乙2=0.016,S,丙2=0.022,S,丁2=0.025,∴S乙2最小.
∴这四个人种成绩发挥最稳定的是乙.
故选B.
7、C
【解析】
根据算术平方根和平方根进行计算即可
【详解】
=4
故选:C
此题考查算术平方根和平方根,掌握运算法则是解题关键
8、B
【解析】
连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.
【详解】
解:如图,连接BB′,
∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
∴AB=AB′,∠BAB′=60°,
∴△ABB′是等边三角形,
∴AB=BB′,
在△ABC′和△B′BC′中,
,
∴△ABC′≌△B′BC′(SSS),
∴∠ABC′=∠B′BC′,
延长BC′交AB′于D,
则BD⊥AB′,
∵∠C=90°,,
∴AB= =4,
∴BD= ,
C′D=2,
∴BC′=BD-C′D=.
故选B.
本题考查旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、−1
根据x轴上方的图象的y值大于0进行解答.
【详解】
如图所示,x>−1时,y>0,
当x<2时,y>0,
∴使y、y的值都大于0的x的取值范围是:−1
10、(7,3)
【解析】
先求出点A、B的坐标得到OA、OB的长度,过点作C⊥x轴于C,再据旋转的性质得到四边形是矩形,求出AC、C即可得到答案.
【详解】
令中y=0得x=3,令x=0得y=4,
∴A(3,0),B(0,4),
∴OA=3,OB=4,
由旋转得,=OB=4, =OA=3,
如图:过点作C⊥x轴于C,则四边形是矩形,
∴AC==4,C==3,∠OC=90°,
∴OC=OA+AC=3+4=7,
∴点的坐标是(7,3)
故答案为:(7,3).
此题考查一次函数与坐标轴的交点坐标,矩形的判定及性质,旋转的性质,利用矩形求对应的线段的长是解题的关键.
11、-1
【解析】
试题分析:由分式的加减运算法则可得:== -1
考点:分式的运算
点评:此题是简单题,分式的加减运算,分母相同的,分子直接相加减;分母不用的要先通分,然后再计算.
12、
【解析】
利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.
【详解】
解:∵AC⊥BC,AB=CD=10,AD=6,
∴AC===8,
∵▱ABCD的对角线AC与BD相交于点O,
∴BO=DO,AO=CO=AC=4,
∴OD===2 .
∴BD=4.
故答案为:4.
本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.
13、
【解析】
先作出Rt△ABC,根据∠A=30°,AB=5,可求得BC、 AC的长度,然后根据直角三角形斜边中线等于斜边的一半求出中线BD的长度,继而可求得△ADB的周长.
【详解】
解:如图所示,
∵∠ABC=90°,∠A=30°,AB=5,
∴设BC=x,则AC=2x
∵
∴
∴x=5
∴BC=5,AC=10
在直角三角形ABC中,∠ABC==90°,BD是AC边上的中线
∴
∴△ADB的周长为:
故答案为:
本题考查了勾股定理、含30°角的直角三角形和直角三角形斜边的中线等知识,解答本题的关键是根据勾股定理求出直角边的长度.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);(3);(4)
【解析】
(1)先提取公因式,然后用完全平方公式进行因式分解;(2)直接用平方差公式进行因式分解;(3)先提取公因式,然后用平方差公式进行因式分解;(4)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解
【详解】
解:(1)
=
=
(2)
=
(3)
=
=
(4)
=
=
本题考查了因式分解方法、乘法公式应用,考查推理能力与计算能力,属于基础题.
15、(1)4;(2);(3)
【解析】
(1)先算括号里面的,再算加减,即可得出答案;
(2)先除法,再进行通分运算,最后化简,即可得出答案;
(3)先对括号里面的进行通分,再进行分式的除法运算,即可得出答案.
【详解】
解(1)原式=-1+1+4=4
(2)原式=
=
=
=
(3)原式=
=
=
(1)本题主要考查,以及负指数幂,注意;
(2)本题主要考查分式的混合运算,通分、约分、因式分解和约分是解答本题的关键;
(3)本题主要考查分式的混合运算,通分、约分、因式分解和约分是解答本题的关键.
16、9
【解析】
(1)逆用勾股定理即可正确作答.
(2)在RT△ADC,应用勾股定理即可求解.
【详解】
(1)证明:∵122=144,12=21,132=169
∴12+122=132
即BD2+AD2=AB2
∴△ABD是直角三角形
∴∠ADB=90°
∴AD⊥BC
(2)解:∵AD⊥BC
∴∠ADC=90°
在RT△ADC中
CD2=AC2-AD2
CD=
CD=9
∴CD的长为9
本题主要考查了勾股定理及其逆定理的应用。灵活应用勾股定理是解决一些实际问题的关键.
17、(1)图见解析;(2)甲的得票数为68票,乙的得票数为60票,丙的得票数为56票;(3)甲的平均成绩为分,乙的平均成绩为分,丙的平均成绩为分;录取乙
【解析】
(1)用1减去甲、丙和其他的得票数所占总票数的百分率即可求出乙的得票数占总票数的百分率,由表格可知:甲的面试成绩为85分,然后补全图一和图二即可;
(2)用总票数乘各候选人的得票数所占的百分率即可;
(3)根据题意,求出三人的加权平均分,然后比较即可判断.
【详解】
解:(1)乙的得票数占总票数的百分率为:1-34%-28%-8%=30%
由表格可知:甲的面试成绩为85分,
补全图一和图二如下:
(2)甲的得票数为:200×34%=68(票)
乙的得票数为:200×30%=60(票)
丙的得票数为:200×28%=56(票)
答:甲的得票数为68票,乙的得票数为60票,丙的得票数为56票.
(3)根据题意,甲的平均成绩为:分
乙的平均成绩为:分
丙的平均成绩为:分
∵
∴乙的平均成绩高
∴应该录取乙.
此题考查的是扇形统计图和条形统计图,结合扇形统计图和条形统计图得出有用信息和掌握加权平均数的公式是解决此题的关键.
18、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.
【解析】
(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;
(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;
(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.
【详解】
(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.
故答案为x,y;
(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.
故答案为2;
(3)根据图象得:BC=4,此时△ABP为2,∴AB•BC=2,即×AB×4=2,解得:AB=8;
由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.
本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、20
【解析】
根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.
【详解】
解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,
所以A、B两地距离为:4×5=20(千米).
故答案为:20
本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.
20、1
【解析】
通过矩形的性质可得,再根据∠AOB=11°,可证△AOD是等边三角形,即可求出OD的长度,再通过证明四边形CODE是菱形,即可求解四边形CODE的周长.
【详解】
∵四边形ABCD是矩形
∴
∵∠AOB=11°
∴
∴△AOD是等边三角形
∵
∴
∴
∵CE//BD,DE//AC
∴四边形CODE是平行四边形
∵
∴四边形CODE是菱形
∴
∴四边形CODE的周长
故答案为:1.
本题考查了四边形的周长问题,掌握矩形的性质、等边三角形的性质、菱形的性质以及判定定理是解题的关键.
21、3
【解析】
根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系,求得最小值.
【详解】
设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2,
则有:S=S△ABC﹣S△PBQ==4t2﹣24t+144=4(t﹣3)2+1.
∵4>0 ∴当t=3s时,S取得最小值.
考点:二次函数的应用.
22、乙
【解析】
根据标准差的意义求解可得.标准差越小,稳定性越好.
【详解】
解:∵S甲=1.8,S乙=0.1,
∴S甲>S乙,
∴成绩较稳定的是乙.
故答案为:乙.
本题考查标准差的意义标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
23、1
【解析】
利用m是方程x2﹣2018x+1=0的一个根得到m2=2018m﹣1,m2+1=2018m,利用整体代入的方法得到原式=m++2,然后通分后再利用整体代入的方法计算.
【详解】
解:∵m是方程x2﹣2018x+1=0的一个根,
∴m2﹣2018m+1=0,
∴m2=2018m﹣1,m2+1=2018m,
∴m2﹣2017m++3=2018m﹣1﹣2017m++3
=m++2
=+2
=+2
=2018+2
=1.
故答案为:1.
本题考查一元二次方程的解得定义,代数式求值,分式的加减.掌握整体思想,整体代入是解题关键.
二、解答题(本大题共3个小题,共30分)
24、AC=1
【解析】
首先利用勾股定理的逆定理证明△ADB是直角三角形,再证明△ADB≌△ADC即可解决问题.
【详解】
在△ABD中,∵AD2+BD2=82+62=10,AB2=12=10,∴AD2+BD2=AB2,∴∠ADB=90°,∴∠ADB=∠ADC.
∵AD是∠BAC的平分线,∴∠BAD=∠CAD.
在△ADB和△ADC中,∵,∴△ADB≌△ADC(ASA),∴AC=AB=1.
本题考查了全等三角形的判定和性质、勾股定理的逆定理、等腰三角形的判定和性质等知识,解题的关键是勾股定理的逆定理的正确应用,属于中考常考题型.
25、(1)见解析;(2).
【解析】
(1)根据勾股定理的逆定理证得△BCD为直角三角形即可;
(2)设AB=x,则AD=x-6,在Rt△ABD中,根据勾股定理建立方程,解出方程即可.
【详解】
(1)证明:∵
∵为直角三角形,
∴,
∴;
(2)解:设为,则
∵,
∴,
在中
,即,
解得
∴.
故答案为(1)见解析;(2).
本题考查了勾股定理及其逆定理.
26、(1)1,80,1;(2)从平均数和中位数进行分析,中学组代表队的决赛成绩较好;(3)中学组代表队选手成绩较稳定.
【解析】
(1)根据平均数、中位数、众数的计算方法,通过计算得出答案,
(2)从平均数和中位数两个方面进行比较、分析得出结论,
(3)利用方差的计算公式,分别计算两个组的方差,通过比较得出答案.
【详解】
(1)中学组的平均数分;
小学组的成绩:70、75、80、100、100因此中位数为:80;
中学组出现次数最多的分数是1分,所有众数为1分;
故答案为:1,80,1.
(2)从平均数上看,两个队都是1分,但从中位数上看中学组1分比小学组的80分要好,
因此从平均数和中位数进行分析,中学组的决赛成绩较好;
答:从平均数和中位数进行分析,中学组代表队的决赛成绩较好.
(3)
,
中学组的比较稳定.
答:中学组代表队选手成绩较稳定.
考查从统计图、统计表中获取数据的能力,以及平均数、中位数、众数、方差的意义和计算方法、明确各个统计量反映一组数据哪些特征,即要对一组数据进行分析,需要利用哪个统计量.
题号
一
二
三
四
五
总分
得分
批阅人
选手
甲
乙
丙
丁
方差(环2)
0.035
0.016
0.022
0.025
测试项目
测试成绩/分
甲
乙
丙
笔试
92
90
95
面试
85
95
80
平均数(分
中位数(分
众数(分
小学组
85
100
中学组
85
2024-2025学年广西壮族自治区来宾市数学九上开学预测试题【含答案】: 这是一份2024-2025学年广西壮族自治区来宾市数学九上开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西钦州市钦南区犀牛脚中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年广西钦州市钦南区犀牛脚中学数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西南宁市第四十七中学数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年广西南宁市第四十七中学数学九上开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。