2024-2025学年贵州省黔西南兴仁县数学九上开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)利用一次函数y=kx+b(k≠0)的图象解关于x的不等式kx+b≤0,若它的解集是x≥﹣2,则一次函数y=kx+b的图象为( )
A.B.
C.D.
2、(4分)已知平行四边形的一边长为10,则对角线的长度可能取下列数组中的( ).
A.4、8B.10、32C.8、10D.11、13
3、(4分)在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()
A.33 B.-33 C.-7 D.7
4、(4分)方程x2-2x-5=0的左边配成一个完全平方后,所得的方程是()
A.B.
C.D.
5、(4分)已知一次函数,若随的增大而减小,则该函数的图像经过( )
A.第一、二、三象限B.第二、三、四象限
C.第一、二、四象限D.第一、三、四象限
6、(4分)如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是( )
A.B.C.D.
7、(4分)要使二次根式有意义,则x的取值范围在数轴上表示正确的是( )
A.B.
C.D.
8、(4分)小明得到育才学校数学课外兴趣小组成员的年龄情况统计如下表:
那么对于不同x的值,则下列关于年龄的统计量不会发生变化的是( )
A.众数,中位数B.中位数,方差C.平均数,中位数D.平均数,方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:=________.
10、(4分)将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.
11、(4分)《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为____________.
12、(4分)化简:_____.
13、(4分)如图,已知一次函数y=kx+3和y=-x+b的图象交于点P(2,4),则关于x的一元一次不等式kx+3>-x+b的解集是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,点.
(1)直接写出直线的解析式;
(2)如图1,过点的直线交轴于点,若,求的值;
(3)如图2,点从出发以每秒1个单位的速度沿方向运动,同时点从出发以每秒0.6个单位的速度沿方向运动,运动时间为秒(),过点作交轴于点,连接,是否存在满足条件的,使四边形为菱形,判断并说明理由.
15、(8分)如图,AD是△ABC的高,BE平分∠ABC交AD于点E,∠C=70º,∠BED=64º,求∠BAC的度数.
16、(8分)如图,在△ABC中,点D在边AB上,点F、E在边AC上,DE∥BC,DF∥BE,求证:.
17、(10分)如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题:
(1)线段AB的长为________,BC的长为________,CD的长为________;
(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.
18、(10分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为a的值代入求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)不等式的正整数解有________个.
20、(4分)计算:÷=_____.
21、(4分)已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.
22、(4分)方程-x=1的根是______
23、(4分)如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点,处,当点落在直线BC上时,线段AE的长为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线,交于点C.
(1)求点D的坐标;
(2)求直线的解析表达式;
(3)求△ADC的面积;
(4)在直线上存在异于点C的另一点P,使得△ADP的面积是△ADC面积的2倍,请直接写出点P的坐标.
25、(10分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),线段OA上的动点M(与O,A不重合)从A点以每秒1个单位的速度沿x轴向左移动。
(1)求A、B两点的坐标;
(2)求△COM的面积S与M的移动时间t之间的函数关系式,并写出t的取值范围;
(3)当t何值时△COM≌△AOB,并求此时M点的坐标。
26、(12分)计算:
(1)2﹣6+3;
(2)(1+)(﹣)+(﹣)×.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
找到当x≥﹣2函数图象位于x轴的下方的图象即可.
【详解】
∵不等式kx+b≤0的解集是x≥﹣2,
∴x≥﹣2时,y=kx+b的图象位于x轴的下方,C选项符合,
故选:C.
本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围.
2、D
【解析】
依题意画出图形,由四边形ABCD是平行四边形,得OA=AC,OB=BD,又由AB=10,利用三角形的三边关系,即可求得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=AC,OB=BD,
∵AB=10,
对选项A,∵AC=4,BD=8,
∴OA=2,OB=4,
∵OA+OB=6<10,
∴不能组成三角形,
故本选项错误;
对选项B,∵AC=10,BD=32,
∴OA=5,OB=16,
∵OA+AB=15<16,
∴不能组成三角形,
故本选项错误;
对选项C,∵AC=8,BD=10,
∴OA=4,OB=5,
∵OA+OB=9<10,
∴不能组成三角形,
故本选项错误;
对选项D,∵AC=11,BD=13,
∴OA=5.5,OB=6.5,
∵OA+OB=12>10,
∴能组成三角形,
故本选项正确.
故选:D.
此题考查了平行四边形的性质以及三角形的三边关系.注意掌握数形结合思想的应用.特别注意实际判断中使用:满足两个较小边的和大于最大边,则可以构成三角形.
3、D
【解析】
试题分析:关于原点对称的两个点,横坐标和纵坐标分别互为相反数.根据性质可得:a=-13,b=20,则a+b=-13+20=1.
考点:原点对称
4、B
【解析】
把常数项-5移项后,应该在左右两边同时加上一次项系数-2的一半的平方.
【详解】
解:把方程x2-2x-5=0的常数项移到等号的右边,得到x2-2x=5,
方程两边同时加上一次项系数一半的平方,得到x2-2x+(-1)2=5+(-1)2,
配方得(x-1)2=1.
故选:B.
本题考查配方法解一元二次方程.配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
5、C
【解析】
根据题意判断k的取值,再根据k,b的符号正确判断直线所经过的象限.
【详解】
解:若y随x的增大而减小,则k<0,即-k>0,故图象经过第一,二,四象限.
故选C.
本题考查的是一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.能够根据k,b的符号正确判断直线所经过的象限.
6、B
【解析】
由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论.
【详解】
解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,
∵小长方形与原长方形相似,
故选B.
此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.
7、B
【解析】
直接利用二次根式有意义的条件得出x的取值范围进而得出答案.
【详解】
解:要使二次根式有意义,
则x≥0,
则x的取值范围在数轴上表示为:.
故选:B.
本题主要考查了二次根式有意义的条件,正确理解二次根式的定义是解题的关键.
8、A
【解析】
由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
【详解】
由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,
则总人数为:5+15+10=30,
故该组数据的众数为14岁,中位数为:=14岁,
即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,
故选A.
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 ﹣1
【解析】
利用二次根式的性质将二次根式化简得出即可.
【详解】
解:=|1-|= ﹣1.
故答案为: ﹣1.
本题考查二次根式的化简求值,正确化简二次根式是解题关键.
10、y=3x-1
【解析】
∵y=3x+1的图象沿y轴向下平移2个单位长度,
∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.
故答案为y=3x﹣1.
11、.
【解析】
设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.
【详解】
解:设AC=x.
∵AC+AB=10,
∴AB=10﹣x.
∵在Rt△ABC中,∠ACB=90°,
∴AC1+BC1=AB1,即x1+31=(10﹣x)1.
解得:x.
故答案为:
本题考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
12、
【解析】
见详解.
【详解】
.
本题考查平方根的化简.
13、x>1
【解析】
观察函数图象得到当x>1时,函数y=kx+3的图象都在y=-x+b的图象上方,所以关于x的不等式kx+3>-x+b的解集为x>1.
【详解】
解:当x>1时,kx+3>-x+b,
即不等式kx+3>-x+b的解集为x>1.
故答案为x>1.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)或;(3)存在,
【解析】
(1)利用待定系数法可求直线AB解析式;
(2)分两种情况讨论,利用全等三角形的性质可求解;
(3)先求点D坐标,由勾股定理可得DN=AM=t,可证四边形AMDN是平行四边形,即当AM=AN时,四边形AMDN为菱形,列式可求t的值.
【详解】
(1)设直线AB解析式为:y=mx+n,
根据题意可得:,
∴,
∴直线AB解析式为;
(2)若点C在直线AB右侧,
如图1,过点A作AD⊥AB,交BC的延长线于点D,过点D作DE⊥AC于E,
∵∠ABC=45°,AD⊥AB,
∴∠ADB=∠ABC=45°,
∴AD=AB,
∵∠BAO+∠DAC=90°,且∠BAO+∠ABO=90°,
∴∠ABO=∠DAC,AB=AD,∠AOB=∠AED=90,
∴△ABO≌△DAE(AAS),
∴AO=DE=3,BO=AE=4,
∴OE=1,
∴点D(1,-3),
∵直线y=kx+b过点D(1,-3),B(0,4).
∴,
∴k=-7,
若点C在点A右侧时,如图2,
同理可得,
综上所述:k=-7或.
(3)设直线DN的解析式为:y=x+n,且过点N(-0.6t,0),
∴0=-0.8t+n,
∴n=0.8t,
∴点D坐标(0,0.8t),且过点N(-0.6t,0),
∴OD=0.8t,ON=0.6t,
∴DN==1,
∴DN=AM=1,且DN∥AM,
∴四边形AMDN为平行四边形,
当AN=AM时,四边形AMDN为菱形,
∵AN=AM,
∴t=3-0.6t,
∴t=,
∴当t=时,四边形AMDN为菱形.
本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,菱形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.
15、58°.
【解析】
由已知条件,首先得出∠DAC=20°,再利用∠ABE=∠EBD,进而得出∠ABE+∠BAE=64°,求出∠EBD=26°,进而得出答案.
【详解】
∵AD是△ABC的高,∠C=70°,
∴∠DAC=20°,
∵BE平分∠ABC交AD于E,
∴∠ABE=∠EBD,
∵∠BED=64°,
∴∠ABE+∠BAE=64°,
∴∠EBD+64°=90°,
∴∠EBD=26°,
∴∠BAE=38°,
∴∠BAC=∠BAE+∠CAD=38°+20°=58°.
此题主要考查了三角形的外角与三角形内角和定理等知识,题目综合性较强,注意从已知条件得出所有结论是解决问题的关键.
16、见解析.
【解析】
利用平行线分线段成比例定理即可证明;
【详解】
证明:∵DE∥BC,
∴=,
∵DF∥BE,
∴=,
∴=.
本题考查平行线分线段成比例定理,解题的关键是熟练掌握平行线分线段成比例定理,属于中考常考题型.
17、(1) ,5,,;(2)直角三角形.
【解析】
(1)把线段AB、BC、CD、放在一个直角三角形中利用勾股定理计算即可;
(2)根据勾股定理的逆定理求出AC=AD,即可判断△ACD的形状;由勾股定理的逆定理得出△ABC是直角三角形.
【详解】
解:
(1)由勾股定理得AB==,BC==5,CD==2;
(2)∵AC==2,AD==2,
∴AC=AD,
∴△ACD是等腰三角形;
∵AB2+AC2=5+20=25=BC2,
∴△ABC是直角三角形.
此题主要考查了勾股定理、勾股定理的逆定理以及等腰三角形的判定;熟练掌握勾股定理是解决问题的关键.
18、,2
【解析】
试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a的值时,不能使原分式没有意义,即a不能取2和-2.
试题解析:原式=·=
当a=0时,原式==2.
考点:分式的化简求值.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.
【详解】
解:解得:不等式的解集是,
故不等式的正整数解为1,2,3,4,共4个.
故答案为:4.
本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
20、1
【解析】
直接利用二次根式的除法运算法则得出即可.
【详解】
解:÷==1.
故答案为1.
本题考查二次根式的除法运算,根据二次根式的运算法则得出是解题关键.
21、
【解析】
设一次函数的解析式为:,利用待定系数法把已知点的坐标代入解析式,解方程组即可得答案.
【详解】
解:设一次函数的解析式为:,
解得:
所以这个一次函数的解析式为:
故答案为:
本题考查的是利用待定系数法求解一次函数的解析式,掌握待定系数法是解题的关键.
22、x=3
【解析】
先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.
【详解】
解:整理得:=x+1,
方程两边平方,得:2x+10=x2+2x+1,
移项合并同类项,得:x2=9,
解得:x1=3,x2=-3,
经检验,x2=-3不是原方程的解,
则原方程的根为:x=3.
故答案为:x=3.
本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.
23、4或1
【解析】
分两种情况:①D′落在线段BC上,②D′落在线段BC延长线上,分别连接ED、ED′、DD′,利用折叠的性质以及勾股定理,即可得到线段AE的长.
【详解】
解:分两种情况:
①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:
由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
∴DE=D′E,
∵正方形ABCD的边长是18,
∴AB=BC=CD=AD=18,
∵CF=8,
∴DF=D′F=CD−CF=10,
∴CD′==6,
∴BD'=BC−CD'=12,
设AE=x,则BE=18−x,
在Rt△AED和Rt△BED'中,
由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+122,
∴182+x2=(18−x)2+122,
解得:x=4,即AE=4;
②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:
由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
∴DE=D′E,
∵正方形ABCD的边长是18,
∴AB=BC=CD=AD=18,
∵CF=8,
∴DF=D′F=CD−CF=10,CD'==6,
∴BD'=BC+CD'=24,
设AE=x,则BE=18−x,
在Rt△AED和Rt△BED'中,
由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+242,
∴182+x2=(18−x)2+242,
解得:x=1,即AE=1;
综上所述,线段AE的长为4或1;
故答案为:4或1.
本题考查了正方形的性质、折叠变换的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键,注意分类讨论.
二、解答题(本大题共3个小题,共30分)
24、(1)D(1,0);(2);(3);(4)P(6,3).
【解析】
(1)已知l1的解析式,令y=0求出x的值即可;
(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;
(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;
(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到AD的距离.
【详解】
解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,
∴x=1,
∴D(1,0);
(2)设直线l2的解析表达式为y=kx+b,
由图象知:x=4,y=0;x=3,y=-,代入表达式y=kx+b,
∴ ,
∴,
∴直线l2的解析表达式为;
(3)由,
解得,
∴C(2,﹣3),
∵AD=3,
∴S△ADC=×3×|﹣3|=;
(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距离,即C纵坐标的绝对值=|﹣3|=3,
则P到AD距离=3,
∴P纵坐标的绝对值=3,点P不是点C,
∴点P纵坐标是3,
∵y=1.5x﹣6,y=3,
∴1.5x﹣6=3
x=6,
∴ P(6,3).
本题考查的是一次函数的性质,三角形面积的计算等有关知识,难度中等.
25、(1)A(4,0)、B(0,2)
(2)当0
【解析】
(1)根据一次函数与x轴,y轴的交点坐标特点,即将x=0时;当y=0时代入函数解析式,即可求得A、B点的坐标.
(2)根据S△OCM=×OC·OM代值即可求得S与M的移动时间t之间的函数关系式,再根据M在线段OA上以每秒1个单位运动,且OA=4,即可求得t的取值范围
(3)根据在△COM和△AOB,已有OA=OC,∠AOB=∠COM,M在线段OA上,故可知OB=OM=2时,△COM≌△AOB,进而即可解题.
【详解】
解:(1)对于直线AB:
当x=0时,y=2;当y=0时,x=4
则A、B两点的坐标分别为A(4,0)、B(0,2)
(2)∵C(0,4),A(4,0)
∴OC=OA=4,
故M点在0
∴OB=OM=2时,△COM≌△AOB.
∴AM=OA-OM=4-2=2
∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间t=2秒钟,此时M(2,0),
本题考查了一次函数求坐标,一次函数与三角形综合应用,解本题的关键是掌握动点M的运动时间及运动轨迹,从而解题.
26、(1)14;(2)
【解析】
(1)直接利用二次根式的性质化简得出答案;
(2)首先利用二次根式乘法运算法则化简,进而计算得出答案.
【详解】
(1)原式=4-6×+12
=4-2+12
=14;
(2)原式=-+-3+6-3
=.
此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
题号
一
二
三
四
五
总分
得分
年龄(岁)
13
14
15
16
人数(人)
5
15
x
10-x
2024-2025学年海口市重点中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年海口市重点中学数学九上开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州省黔西南州望谟六中学九上数学开学质量检测模拟试题【含答案】: 这是一份2024-2025学年贵州省黔西南州望谟六中学九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州省黔西南市九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年贵州省黔西南市九上数学开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。