2024-2025学年合肥市重点中学九年级数学第一学期开学学业质量监测试题【含答案】
展开这是一份2024-2025学年合肥市重点中学九年级数学第一学期开学学业质量监测试题【含答案】,共19页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于( )
A.2B.3C.4D.6
2、(4分)若一次函数y=(k-3)x-k的图象经过第二、三、四象限,则k的取值范围是( )
A.k<3B.k<0C.k>3D.0<k<3
3、(4分)已知,如图,正方形的面积为25,菱形的面积为20,求阴影部分的面积()
A.11B.6.5C.7D.7.5
4、(4分)一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD=( )
A.60°B.70°C.80°D.90°
5、(4分)已知三个数为3,4,12,若再添加一个数,使这四个数能组成一个比例,那么这个数可以是( )
A.1B.2C.3D.4
6、(4分)下列条件中,不能判定四边形是正方形的是( )
A.对角线互相垂直且相等的四边形B.一条对角线平分一组对角的矩形
C.对角线相等的菱形D.对角线互相垂直的矩形
7、(4分)下列各组数中不能作为直角三角形的三边长的是( )
A.,,B.6,8,10C.7,24,25D.,3,5
8、(4分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为(▲)
A.-3B.1C.5D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若反比例函数图象经过点A (﹣6,﹣3),则该反比例函数表达式是________.
10、(4分)一个有进水管与出水管的容器,从某时刻开始,2min内只进水不出水,在随后的4min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则每分钟出水____________升.
11、(4分)因式分解:= .
12、(4分)甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是___________ . (填“>”,“<”或“=”)
13、(4分)若一个正多边形的每一个外角都是,则这个正多边形的边数为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,点E,F是□ABCD的对角线BD上两点,且BE=DF.求证:四边形AECF是平行四边形.
15、(8分)申思同学最近在网上看到如下信息:
总书记明确指示,要重点打造北京非首都功能疏解集中承载地,在河北适合地段规划建设一座以新发展理念引领的现代新型城区.雄安新区不同于一般意义上的新区,其定位是重点承接北京疏解出的与去全国政治中心、文化中心、国际交往中心、科技创新中心无关的城市功能,包括行政事业单位、总部企业、金融机构、高等院校、科研院所等.右图是北京、天津、保定和雄安新区的大致交通图,其中保定、天津和雄安新区可近似看作在一条直线上.申思同学想根据图中信息求出北京和保定之间的大致距离.
他先画出如图示意图,其中AC=AB=BC=100,点C在线段BD上,他把CD近似当作40,来求AD的长.
请帮申思同学解决这个问题.
16、(8分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班
分别选5名同学参加“国防知识”比赛,
其预赛成绩如图所示:
(1)根据上图填写下表:
(2)分别求甲乙两班的方差,并从稳定性上分析哪个班的成绩较好.
17、(10分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过10吨,按每吨3元收费.如果超过10吨,未超过的部分每吨仍按3元收费,超过的部分按每吨5元收费.设某户每月用水量为x吨,应收水费为y元.
(1)分别写出每月用水量未超过10吨和超过10吨,y与x之间的函数关系式;
(2)若该城市某户5月份水费70元,该户5月份用水多少吨?
18、(10分)直线与轴轴分别交于点A和点B,M是OB上一点,若将△ABM沿AM折叠,点B恰好落在轴上的点B′处,试求出直线AM的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是_____
20、(4分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg
21、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.
22、(4分)如图,△ABC 中,∠C=90°,AC=BC, AD 平分∠BAC 交 BC 于点 D,DE⊥AB,垂足为 E,且 AB=10cm,则△DEB 的周长是_____cm.
23、(4分)在正比例函数 y=(2m-1)x 中,y 随 x 增大而减小,则 m 的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.
25、(10分)用适当方法解下列方程
(1)3(x﹣2)=5x(x﹣2)
(2)x2+x﹣1=0
26、(12分)阅读理解:阅读下列材料:已知二次三项式2x2+x+a有一个因式是(x+2),求另一个因式以及a 的值
解:设另一个因式是(2x+b),
根据题意,得2x2+x+a=(x+2)(2x+b),
展开,得2x2+x+a =2x2+(b+4)x+2b,
所以,解得,
所以,另一个因式是(2x−3),a 的值是−6.
请你仿照以上做法解答下题:已知二次三项式3x2 10x m 有一个因式是(x+4),求另一个因式以及m的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD=BC=8,CD=AB=6,
∴∠F=∠DCF,
∵∠C平分线为CF,
∴∠FCB=∠DCF,
∴∠F=∠FCB,
∴BF=BC=8,
同理:DE=CD=6,
∴AF=BF−AB=2,AE=AD−DE=2
∴AE+AF=4
故选C
2、D
【解析】
由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.
【详解】
∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,
∴,
解得:0<k<3,
故选:D.
本题考查了一次函数图象与系数的关系,牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”是解题的关键.
3、A
【解析】
由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.
【详解】
∵正方形ABCD的面积是25,
∴AB=BC=BP=PQ=QC=5,
又∵S菱形BPQC=PQ×EC=5×EC=20,
∴S菱形BPQC=BC•EC,
即20=5•EC,
∴EC=4
在Rt△QEC中,EQ==3;
∴PE=PQ-EQ=2,
∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.
故选A.
此题考查菱形的性质,正方形的性质,解题关键在于利用勾股定理进行计算.
4、B
【解析】
∵六边形ABCDEF的内角和为:180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=430°,
∴∠GBC+∠C+∠CDG=720°-430°=290°,
∴∠G=360°-(∠GBC+∠C+∠CDG)=70°,
故选B.
5、A
【解析】
根据对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 (即ad=bc),我们就说这四条线段是成比例线段,简称比例线段,进而分别判断即可.
【详解】
解:1:3=4:12,
故选:A.
此题主要考查了比例线段,正确把握比例线段的定义是解题关键.
6、A
【解析】
根据正方形的判定方法逐项判断即可.
【详解】
对角线互相垂直且相等的四边形不一定是平行四边形,故A不能判定,
由矩形的一条对角线平分一组对角可知该四边形也是菱形,故B能判定,
由菱形的对角线相等可知该四边形也是矩形,故C能判定,
由矩形的对角线互相垂直可知该四边形也是菱形,故D能判定,
故选A.
本题主要考查正方形的判定,掌握正方形既是矩形也是菱形是解题的关键.
7、A
【解析】
勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.
【详解】
∵()2+()2=7≠()2,∴,,不能作为直角三角形的三边长.故选A.
本题属于基础应用题,只需熟练掌握勾股定理的逆定理,即可完成.
8、D
【解析】
当点C横坐标为-3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=18/x
【解析】
函数经过一定点,将此点坐标代入函数解析式y=(k≠0)即可求得k的值.
【详解】
设反比例函数的解析式为y=(k≠0),函数经过点A(-6,-3),
∴-3=,得k=18,
∴反比例函数解析式为y=.
故答案为:y=.
此题比较简单,考查的是用待定系数法求反比例函数的解析式.
10、7.1
【解析】
出水量根据后4分钟的水量变化求解.
【详解】
解:根据图象,每分钟进水20÷2=10升,
设每分钟出水m升,则 10×(6-2)-(6-2)m=30-20,
解得:m=7.1.
故答案为:7.1
本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
11、
【解析】
直接应用平方差公式即可求解..
【详解】
.
本题考查因式分解,熟记平方差公式是关键.
12、<
【解析】
根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:∵甲的成绩比乙的成绩稳定,
∴S2甲<S2乙,
故答案为:<.
本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
13、1
【解析】
根据正多边形的每一个外角都相等以及多边形的外角和为360°,多边形的边数=360°÷30°,计算即可求解.
【详解】
解:这个正多边形的边数:360°÷30°=1,
故答案为:1.
本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
先根据平行四边形的性质得出,再根据平行性的性质可得,然后根据三角形全等的判定定理与性质得出,从而可得,由平行线的判定可得,最后根据平行四边形的判定即可得证.
【详解】
四边形ABCD是平行四边形
在和中,
,即
四边形AECF是平行四边形.
本题考查了平行四边形的判定与性质、平行线的性质、三角形全等的判定定理与性质等知识点,熟记平行四边形的判定与性质是解题关键.
15、见解析
【解析】
试题分析:作,构造直角三角形,先求出DE和AE的长度,再根据勾股定理求得AD的长度.
试题解析:
作.
∵,
∴为等边三角形.
∵,
∴,,
∴,
∴.
∵中,
.
∵,
∴.
∵中,
,
.
∵,
∴.
16、(1)甲众数:8.5,乙中位数:8;(2)甲班的成绩较好.
【解析】
试题分析:(1)根据众数的概念找出出现次数最多的数据,根据中位数的求解方法进行求解,即可解答;
(2)先求出甲、乙的方差,再比较即可.
试题解析:(1)根据图示可知甲班8.5出现次数最多,甲班的众数是8.5;
乙班数据从小到大排列为:7,7.5,8,10,10,所以中位数是8,
故答案为8.5,8,
填表如下:
(2)甲的方差为:
×[(8.5﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+(8.5﹣8.5)2+(10﹣8.5)2]=0.7,
乙的方差为:
×[(7﹣8.5)2+(10﹣8.5)2+(10﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2]=1.6,
因为0.7<1.6
所以甲班的方差小,成绩稳定,甲班的成绩较好.
17、(1)当0≤x≤10时,y=3x,当x>10时,y=5x﹣20;(2)18
【解析】
(1)根据题意分别列出0≤x≤10和x>10时的y与x的函数关系式;
(2)通过讨论得到用户用水量的大致范围,代入相应函数关系式即可.
【详解】
解:(1)由已知,当0≤x≤10时,y=3x
当x>10时,y=3×10+(x﹣10)×5=5x﹣20
(2)当每月用水10吨时,水费为30元
∴某户5月份水费70元时,用水量超过10吨
∴5x﹣20=70
解得x=18
答:该户5月份用水18吨.
故答案为:(1)当0≤x≤10时,y=3x,当x>10时,y=5x﹣20;(2)18.
本题为一次函数实际应用问题,考查一次函数性质,运用了分类讨论的数学思想.
18、y=-0.5x+1
【解析】
先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;设OM=m,则B'M=BM=8-m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.
【详解】
解:y=-x+8,
令x=0,则y=8,
令y=0,则x=6,
∴A(6,0),B(0,8),
∴OA=6,OB=8 AB=10,
∵A B'=AB=10,
∴O B'=10-6=4,
∴B'的坐标为:(-4,0).
设OM=m,则B'M=BM=8-m,
在Rt△OMB'中,m2+42=(8-m)2,
解得:m=1,
∴M的坐标为:(0,1),
设直线AM的解析式为y=kx+b,
则,
解得:,
故直线AM的解析式为:y=-0.5x+1.
本题考查了一次函数的综合,涉及了待定系数法求函数解析式、勾股定理及翻折变换的性质,解答本题的关键是数形结合思想的应用,难度一般.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得出四边形DBEC是菱形,由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
【详解】
∵CE∥DB,BE∥DC,
∴四边形DBEC为平行四边形.
又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
∴CD=BD=AC,
∴平行四边形DBEC是菱形;
∵点D,F分别是AC,AB的中点,AD=3,DF=1,
∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC,
∴BC=1DF=1.
又∵∠ABC=90°,
∴AB==.
∵平行四边形DBEC是菱形,
∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4,
故答案为4.
考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题.
20、20
【解析】
设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg
21、①③④
【解析】
根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.
【详解】
根据图示及数据可知:
①k<0正确;
②a<0,原来的说法错误;
③方程kx+b=x+a的解是x=3,正确;
④当x>3时,y1<y2正确.
故答案是:①③④.
考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
22、10
【解析】
试题分析:根据角平分线的性质可得:CD=DE,△ACD和△AED全等,则AE=AC,根据AC=BC可知AE=BC,则△DEB的周长=DE+BD+BE=CD+BD+BE=BC+BE=AE+BE=AB=10cm.
23、
【解析】
根据正比例函数图象的增减性可求出m的取值范围.
【详解】
解:∵函数y=(2m-1)x是正比例函数,且y随x的增大而减小,
∴2m-1<0,
解得
故答案为
本题考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
根据AAS证△AFE≌△DBE,推出AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是平行四边形,进而证明ADCF是菱形.
【详解】
证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD,
在△AFE和△DBE中,
,
∴△AFE≌△DBE(AAS);
∴AF=DB.
∵DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=BC=DC,
∴四边形ADCF是菱形.
本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,解题的关键是正确寻找全等三角形,利用直角三角形的性质解决问题,属于中考常考题型.
25、(1)x1=2,x2=;(2)x=.
【解析】
(1) 用因式分解法解方程;
(2) 利用求根公式法解方程.
【详解】
解:(1)方程整理得:3(x﹣2)﹣5x(x﹣2)=0,
分解因式得:(x﹣2)(3﹣5x)=0,
解得:x1=2,x2= ;
(2)这里a=1,b=1,c=﹣1,
∵△=1+4=5,
∴x=.
考查了解一元二次方程的方法.当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.
26、另一个因式是(3x-2), m 的值是-8
【解析】
设另一个因式为(3x+b),然后列方程组求解即可.
【详解】
设另一个因式是(3x+b),
根据题意,得3x2+10x+m=(x+4)(3x+b),
展开,得3x2+10x+m =3x2+(b+12)x+4b,
所以,解得,
所以,另一个因式是(3x-2), m 的值是-8.
本题考查了解二元一次方程组与因式分解,解题的根据是熟练的掌握解二元一次方程组与因式分解的相关知识点.
题号
一
二
三
四
五
总分
得分
平均数
中位数
众数
甲班
8.5
8.5
乙班
8.5
10
平均数
中位数
众数
甲班
8.5
8.5
8.5
乙班
8.5
8
10
相关试卷
这是一份2024-2025学年合肥市包河数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年贵州省兴义市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广西钦州市钦南区数学九年级第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。