初中数学3 三角形的中位线学案
展开【学习目标】
掌握三角形中位线的概念 、性质定理及其应用.
【知识梳理】
(1)三角形中线的定义:三角形的 和 的连线,叫三角形的中线;
(2)一个三角形有______条中线,试画出图(1)⊿ABC的中线.
【典型例题】
知识点一 认识三角形中位线
1.(1)三角形中位线定义:连接_______________________的线段,叫做三角形的中位线.
A
B
C
图(1)
D
E
F
图(2)
A
E
D
B
C
图(3)
(2)一个三角形共有 条中位线,试画出图(2)⊿DEF的中位线.
知识点二 三角形中位线定理:
2.如图(3)
(1)D,E分别是AB,AC的中点,通过度量你发现DE与 BC有怎样的数量关系?
(2)用量角器量一量∠ADE与∠B的度数,你发现DE与BC有怎样的位置关系?
你能不能用语言叙述你发现的性质:_____________________________
(3)试一试证明你的发现
已知:在△ABC 中,DE是△ABC的中位线
求证:
证明:
(4)由此得到三角形中位线定理: __________________________________.
几何语言:∵ , ∴ .
【巩固训练】
1.如图所示,△ABC中,D、E、F分别是BC、AB、CA的中点,AB=10 cm,AC=6 cm,则四边形AEDF的周长为_________.
2. 如图,DE是△ABC的中位线,∠ABC的平分线交DE于点F,AB=8,BC=12,则EF的长为( )
A.1 B.1.5 C.2 D.2.5
A
B
D
N
M
C
3题图
1题图
2题图
3.如图所示,M是⊿ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求⊿ABC的周长.
4题图
4.已知:如图,第一个三角形的周长为a,它的三条中位线组成第二个三角形,其周长为 ,第二个三角形的三条中位线又组成第三个三角形,其周长为 ,以此类推,第2020个三角形的周长为__ ____.
5题图
5.如图,在△ABC中,点E,F分别为边AB,AC的中点,延长EF到点G,使FG=EF.求证:四边形EGCB是平行四边形.
5.3三角形的中位线定理(1)
【知识梳理】
1.顶点 对边中点 三
【典型例题】
1.三角形两边中点的 三
2.三角形的中位线平行于第三边,且等于第三边的一半
3.DE∥BC DE=BC
4.三角形的中位线平行于第三边,且等于第三边的一半
【巩固训练】
1.16cm 2.C
3.(1)证明:在△ABN和△ADN中,
∵∠1=∠2AN=AN∠ANB=∠AND,
∴△ABN≌△ADN(ASA),
∴BN=DN.
(2)∵△ABN≌△ADN,
∴AD=AB=10,
又∵点M是BC中点,
∴MN是△BDC的中位线,
∴CD=2MN=6,
故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.
4.
5.证明 ∵E,F分别为AB,AC的中点,∴EF是△ABC的中位线, ∴EF∥BC,EF=1/2 BC,
∵EF=FG,∴EG=BC.又∵EG∥BC,∴四边形EGCB是平行四边形.,
数学八年级上册1 认识分式学案: 这是一份数学八年级上册<a href="/sx/tb_c99036_t4/?tag_id=42" target="_blank">1 认识分式学案</a>,共4页。学案主要包含了学习目标,知识梳理,典型例题,巩固训练等内容,欢迎下载使用。
初中数学鲁教版(五四学制)(2024)八年级上册1 认识分式学案: 这是一份初中数学鲁教版(五四学制)(2024)八年级上册<a href="/sx/tb_c99036_t4/?tag_id=42" target="_blank">1 认识分式学案</a>,共3页。学案主要包含了学习目标,知识梳理,典型例题,巩固训练等内容,欢迎下载使用。
数学八年级上册3 公式法学案设计: 这是一份数学八年级上册<a href="/sx/tb_c99034_t4/?tag_id=42" target="_blank">3 公式法学案设计</a>,共4页。学案主要包含了学习目标,知识梳理,典型例题,巩固训练等内容,欢迎下载使用。