2024-2025学年河北省石家庄市裕华区第四十中学九上数学开学学业水平测试试题【含答案】
展开这是一份2024-2025学年河北省石家庄市裕华区第四十中学九上数学开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为( )
A.3B.4C.6D.5
2、(4分)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )
A.△AFD≌△DCEB.AF=AD
C.AB=AFD.BE=AD﹣DF
3、(4分)乒乓球是我国的国球,也是世界上流行的球类体育项目.我国乒乓球名将与其对应身高如下表所示:
这些乒乓球名将身高的中位数和众数是( )
A.160,163B.173,175C.163,160D.172,160
4、(4分)如图,在中,是上一点,,,垂足为,是的中点,若,则的长度为( )
A.36B.18C.9D.5
5、(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形
C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形
6、(4分)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为( )
A.B.C.D.
7、(4分)已知(﹣5,y1),(﹣3,y2)是一次函数y=x+2图象上的两点,则y1与y2的关系是( )
A.y1<y2B.y1=y2C.y1>y2D.无法比较
8、(4分)已知m、n是正整数,若+是整数,则满足条件的有序数对(m,n)为( )
A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)有五个面的石块,每个面上分别标记1,2,3,4,5,现随机投掷100次,每个面落在地面上的次数如下表,估计石块标记3的面落在地面上的概率是______.
10、(4分)菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长是_______cm.
11、(4分)关于x的一次函数,当_________时,它的图象过原点.
12、(4分)下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为_____.
13、(4分)如图①,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B.图②是点F运动时,△FBC的面积y(cm)随时间x(s)变化的关系图象,则a的值是__
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示为一种吸水拖把,它由吸水部分、拉手部分和主干部分构成.小明在拖地中发现,拉手部分在一拉一放的过程中,吸水部分弯曲的角度会发生变化。设拉手部分移动的距离为吸水部分弯曲所成的角度为,经测量发现:拉手部分每移动,吸水部分角度变化.请回答下列问题:
(1)求出关于的函数解析式;
(2)当吸水部分弯曲所成的角度为时,求拉手部分移动的距离.
15、(8分)一个工程队修一条3000米的公路,由于开始施工时增加了人员,实际每天修路比原来多50%,结果提前2天完成,求实际每天修路多少米?
16、(8分)如图,在直角坐标系中,A(0,4)、C(3,0),
(1)① 画出线段AC关于y轴对称线段AB;
② 将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;
(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.
17、(10分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.
根据图表信息,解答下列问题:
(1)本次调查的总人数为______,表中m的值为_______;
(2)请补全条形统计图;
(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
18、(10分)如图,两块大小不等的等腰直角三角形按图1放置,点为直角顶点,点在上,将绕点顺时针旋转角度,连接、.
(1)若,则当 时,四边形是平行四边形;
(2)图2,若于点,延长交于点,求证:是的中点;
(3)图3,若点是的中点,连接并延长交于点,求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)平面直角坐标系中,A是y=﹣(x>0)图象上一点,B是x轴正半轴上一点,点C的坐标为(0,﹣2),若点D与A,B,C构成的四边形为正方形,则点D的坐标_____.
20、(4分)菱形的周长是20,一条对角线的长为6,则它的面积为_____.
21、(4分)一次函数,若y随x的增大而增大,则的取值范围是 .
22、(4分)在4个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8个红球.2个白球,3号袋中有5个红球.5个白球,4号袋中有2个红球,8个白球.从各个袋子中任意摸出1个球,摸到白球的可能性最大的是_____(填袋子号).
23、(4分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在中,、是上的两点,且,若,,求的度数.
25、(10分)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.
(1)求第一批每支钢笔的进价是多少元?
(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?
26、(12分)随着我国经济社会的发展,人民对于美好生活的追求越来越高,外出旅游已成为时尚.某社区为了了解家庭旅游消费情况,随机抽取部分家庭,对每户家庭的年旅游消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:
(1)本次被调査的家庭有 户,表中 a= ;
(2)本次调查数据的中位数出现在 组.扇形统计图中,E组所在扇形的圆心角是 度;
(3)若这个社区有2700户家庭,请你估计家庭年旅游消费8000元以上的家庭有多少户?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有,从而求出.
【详解】
解:∵D、E分别是AB、AC的中点.
∴DE是△ABC的中位线,
∴BC=2DE,
∵DE=3,
∴BC=2×3=1.
故选:C.
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
2、B
【解析】
A.由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.
又∵DE=AD,∴△AFD≌△DCE(AAS),故A正确;
B.∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故B错误;
C.由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故C正确;
D.由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故D正确;
故选B.
3、C
【解析】
根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;
【详解】
解:把数据从小到大的顺序排列为:155,1,1,2,171,173,175;
在这一组数据中1是出现次数最多的,故众数是1.
处于中间位置的数是2,那么由中位数的定义可知,这组数据的中位数是2.
故选:C.
此题考查中位数与众数的意义,掌握基本概念是解决问题的关键.
4、C
【解析】
根据三角形的中位线定理,在三角形中准确应用,并且求证E为CD的中点,再求证EF为△BCD的中位线,从而求得结论.
【详解】
∵在△ACD中,∵AD=AC,AE⊥CD,
∴E为CD的中点,
又∵F是CB的中点,
∴EF为△BCD的中位线,
∴EF∥BD,EF=BD,
∵BD=18,
∴EF=9,
故选:C.
本题考查了三角形中位线定理和等腰三角形的性质.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.
5、D
【解析】
直接利用特殊平行四边形的判定逐一进行判断即可
【详解】
有一组邻边相等的平行四边形是菱形,故A正确
对角线互相垂直的平行四边形是菱形,故B正确
有一个角是直角的平行四边形是矩形,故C正确
对角线垂直且相等的平行四边形是正方形,故D错误
本题选择不正确的,故选D
本题主要考查平行四边形性质、矩形的判定定理、正方形判定定理、菱形判定定理,基础知识扎实是解题关键
6、A
【解析】
分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.
详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.
∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).
∵P1与P2关于原点对称,∴P2(2.8,3.6).
故选A.
点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
7、C
【解析】
k=-<0,k<0时,y将随x的增大而减小.
【详解】
解:
∵k=-<0,
∴y将随x的增大而减小.
∵-5<-3,
∴y1>y1.
故选C.
本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
8、C
【解析】
根据二次根式的性质分析即可得出答案.
【详解】
解:∵+是整数,m、n是正整数,
∴m=2,n=5或m=8,n=20,
当m=2,n=5时,原式=2是整数;
当m=8,n=20时,原式=1是整数;
即满足条件的有序数对(m,n)为(2,5)或(8,20),
故选:C.
本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据表中的信息,先求出石块标记3的面落在地面上的频率,再用频率估计概率即可.
【详解】
解:石块标记3的面落在地面上的频率是=,
于是可以估计石块标记3的面落在地面上的概率是.
故答案为:.
本题考查用频率来估计概率,在大量重复试验下频率的稳定值即是概率,属于基础题.
10、20cm
【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.
【详解】
解:如图,∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=×6=3cm,
OB=BD=×8=4cm,
根据勾股定理得,AB=,
所以,这个菱形的周长=4×5=20cm.
故答案为:20
本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.
11、
【解析】
由一次函数图像过原点,可知其为正比例函数,所以,求出k值即可.
【详解】
解: 函数图像过原点
该函数为正比例函数
故答案为:
本题考查了一次函数与正比例函数,一次函数,当时,为正比例函数,正比例函数图像过原点,正确理解正比例函数的概念及性质是解题的关键.
12、13.1.
【解析】
根据加权平均数的计算公式计算可得.
【详解】
解:该校篮球队队员的平均年龄为=13.1
故答案为13.1.
本题主要考查加权平均数的计算方法,解题的关键是掌握平均数的定义和计算公式.
13、
【解析】
过点D作DE⊥BC于点E,通过分析图象,点F从点A到D用a s,此时,△FBC的面积为a,依此可求菱形的高DE;再由图象可知,BD=,在Rt△DBE中应用勾股定理求BE的值,进而在Rt△DEC应用勾股定理求a的值.
【详解】
过点D作DE⊥BC于点E.
由图象可知,点F由点A到点D用时为a s,△FBC的面积为a cm.
∴AD=a,
∴ DE·AD=a,
∴DE=2.
当点F从D到B时,用s,
∴BD=.
Rt△DBE中,
BE=.
∵ABCD是菱形,
∴EC=a-1,DC=a,
Rt△DEC中,a=2+(a-1) ,
解得a= .
此题考查菱形的性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系;
三、解答题(本大题共5个小题,共48分)
14、(1);(2)拉手部分移动的距离为或.
【解析】
(1)根据拉手部分每移动,吸水部分角度变化,在拉手向上运动时,吸水部分弯曲所成的角度由180°到0°变化,拉手再向下时,吸水部分弯曲所成的角度由°到180°变化,由此即可求出关于的函数解析式;
(2)把代入(1)中所求的函数解析式,求出的值即可.
【详解】
解:(1)当在拉手向上运动时,拉手部分最大移动的距离为9cm,,
当拉手由顶端向下运动时即返回时,.
综上所述:
(2)由题意可知:当
①,
②,
当吸水部分弯曲的角度为时,
拉手部分移动的距离为或
本题考查了一次函数的应用,理解题意得出关于的函数解析式是解题的关键.
15、实际每天修路1米.
【解析】
首先设原来每天修路x米,则实际每天修路(1+50%)x米,根据题意可得等量关系:原来修3000米的时间-实际修3000米的时间=2天,根据等量关系列出方程即可.
【详解】
设原来每天修路x米,则实际每天修路(1+50%)x米,
根据题意得:-=2,
解得:x=500,
经检验,x=500是原分式方程的解,
∴(1+50%)x=(1+50%)×500=1.
答:实际每天修路1米.
本题考查的知识点是分式方程的应用,解题关键是正确理解题意,找出题目中的等量关系,列出方程,注意不要忘记检验.
16、(1)①作图见解析;②作图见解析;(2).
【解析】
试题分析:(1)、根据题意画出图形;(2)、将面积平分的直线经过平行四边形ABCD的对角线交点(1.5,2).
试题解析:(1)
(2)
考点:(1)、平行四边形的性质;(2)、一次函数的性质.
17、 (1)120;45%;(2)补图见解析;(3)平均每天得到约1980人的肯定.
【解析】
(1)非常满意的人数÷所占百分比计算即可得;用满意的人数÷总人数即可得m
(2)计算出比较满意的n的值,然后补全条形图即可
(3)每天接待的游客×(非常满意+满意)的百分比即可
【详解】
(1)12÷10%=120;54÷120×100%=45%
(2)比较满意:120×40%=48(人);补全条形统计图如图.
(3)3600×(45%+10%)=1980(人).
答:该景区服务工作平均每天得到约1980人的肯定.
统计图有关的计算是本题的考点,熟练掌握其特点并正确计算是解题的关键.
18、(1)时,四边形是平行四边形;(2)见解析;(3)见解析.
【解析】
(1)当AC∥DE时,因为AC=DE,推出四边形ACDE是平行四边形,利用平行四边形的性质即可解决问题.
(2)如图2中,作DM⊥FM于M,BN⊥FM交FM的延长线于N.利用全等三角形的性质证明BN=DM,再证明△BNG≌△DMG(AAS)即可解决问题.
(3)如图3中,延长CM到K,使得MK=CM,连接AK.KM.想办法证明△BCD≌△CAK(SAS),即可解决问题.
【详解】
(1)解:如图1-1中,连接AE.
当AC∥DE时,∵AC=DE,
∴四边形ACDE是平行四边形,
∴∠ACE=∠CED,
∵CE=CD,∠ECD=90°,
∴∠CED=1°,
∴α=∠ACE=1°.
故答案为1.
(2)证明:如图2中,作DM⊥FM于M,BN⊥FM交FM的延长线于N.
∵CF⊥AE,DM⊥FM,
∴∠CFE=∠CMD=∠ECD=90°,
∴∠ECF+∠CEF=90°,∠ECF+∠DCM=90°,
∴∠CEF=∠DCM,∵CE=CD,
∴△CFE≌△DMC(AAS),
∴DM=CF,
同法可证:CF=BN,
∴BN=DM,
∵BN⊥FM,
∴∠N=∠DMG=90°,
∵∠BGN=∠DGM,
∴△BNG≌△DMG(AAS),
∴BG=DG,
∴点G是BD的中点.
(3)证明:如图3中,延长CM到K,使得MK=CM,连接AK.KM.
∵AM-ME,CM=MK,
∴四边形ACEK是平行四边形,
∴AK=CE=CD,AK∥CE,
∴∠KAC+∠ACE=180°,
∵∠ACE+∠BCD=180°,
∴∠BCD=∠KAC,
∵CA=CB,CD=AK,
∴△BCD≌△CAK(SAS),
∵∠ACK=∠CBD,
∵∠ACK+∠BCN=90°,
∴∠CBD+∠BCN=90°,
∴∠CNB=90°,
∴CN⊥BD.
本题属于四边形综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).
【解析】
首先依据题意画图图形,对于图1和图2依据正方形的对称性可得到点D的坐标,对于图3可证明△AEC≌△BFA,从而可得到AE=BF,然后由反比例函数的解析式可求得点A的坐标,然后可得到点D的坐标.
【详解】
如图1所示:当CD为对角线时.
∵OC=2,AB=CD=4,
∴D(4,﹣2).
如图2所示:
∵OC=2,BD=AC=4,
∴D(2,﹣4).
如图3所示:过点A作AE⊥y轴,BF⊥AE,则△AEC≌△BFA.
∴AE=BF.
设点A的横纵坐标互为相反数,
∴A(2,﹣2)
∴D(2﹣2,2﹣2).
综上所述,点D的坐标为(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).
故答案为:(4,﹣2)或(2,﹣4)或(2﹣2,2﹣2).
本题主要考查的是正方形的性质,反比例函数的性质,依据题意画出复合题意得图形是解题的关键.
20、1.
【解析】
先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果.
【详解】
由题意得,
∵菱形ABCD
∴,AC⊥BD
∴
∴
∴
考点:本题考查的是菱形的性质
解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.
21、.
【解析】
一次函数的图象有两种情况:
①当时,函数的值随x的值增大而增大;
②当时,函数的值随x的值增大而减小.
由题意得,函数的y随x的增大而增大,.
22、1
【解析】
要求可能性的大小,只需求出各自所占的比例大小即可.
【详解】
解:1号袋子摸到白球的可能性=0;
2号袋子摸到白球的可能性=;
3号袋子摸到白球的可能性=;
1号个袋子摸到白球的可能性=,
所以摸到白球的可能性最大的是1.
本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.
23、2.1.
【解析】
连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.
【详解】
解:如图,连接CP.
∵∠ACB=90°,AC=3,BC=1,
∴AB=,
∵PE⊥AC,PF⊥BC,∠ACB=90°,
∴四边形CFPE是矩形,
∴EF=CP,
由垂线段最短可得CP⊥AB时,线段EF的值最小,
此时,S△ABC=BC•AC=AB•CP,
即×1×3=×5•CP,
解得CP=2.1.
∴EF的最小值为2.1.
故答案为2.1.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
可证明△BCF≌△DAE,则∠BCF=∠DAE,根据三角形外角的性质可得出∠DAE的度数,从而得出∠BCF的度数.
【详解】
解:∵四边形是平行四边形,
∴,
∴,
∵,
∴,
∴,
∴,
∵,,
∴,
∴
本题考查了平行四边形的判定和性质,全等三角形的判定和性质,外角的性质.
25、(1)15元;(2)1支.
【解析】
试题分析:(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;
(2)设销售y只后开始打折,根据第二批文具盒的利润率不低于20%,列出不等式,再求解即可.
试题解析:解:(1)设第一批每只文具盒的进价是x元,根据题意得:
﹣=10
解得:x=15,经检验,x=15是方程的解.
答:第一批文具盒的进价是15元/只.
(2)设销售y只后开始打折,根据题意得:
(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥141×20%,解得:y≥1.
答:至少销售1只后开始打折.
点睛:本题考查了列分式方程和一元一次不等式的应用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.
26、(1)90,19;(2)B,24;(3)1320户
【解析】
(1)根据图表数据与百分率对应求得总人数,从而求得a值;
(2)结合图表及数据可求得中位数和E所在的圆心角度数;
(3)根据样本估计总体.
【详解】
(1)∵A组共有27户,对应的百分率为30%
∴总户数为:(户)
∴(户) ;
(2) ∵共有90户,中位数为第45,46两个数据的平均数,27+19=46,
∴ 中位数位于B组;
E对应的圆心角度数为:
(3) 旅游消费8000元以上的家庭为C、D、E组,
大约有:2700×=1320(户).
本题考查统计的相关知识,解题关键在于梳理统计图当中的条件信息.
题号
一
二
三
四
五
总分
得分
批阅人
乒乓球名将
刘诗雯
邓亚萍
白杨
丁宁
陈梦
孙颖莎
姚彦
身高()
160
155
171
173
163
160
175
石块的面
1
2
3
4
5
频数
17
28
15
16
24
年龄/岁
12
13
14
15
人数
1
3
4
2
满意度
人数
所占百分比
非常满意
12
10%
满意
54
m
比较满意
n
40%
不满意
6
5%
组别
家庭年旅游消费金额x(元)
户数
A
x≤4000
27
B
4000< x≤8000
a
C
8000< x≤12000
24
D
12000< x≤16000
14
E
x>16000
6
相关试卷
这是一份2024-2025学年河北省石家庄市名校九年级数学第一学期开学学业水平测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北省秦皇岛市九上数学开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北省秦皇岛市九上数学开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。