终身会员
搜索
    上传资料 赚现金

    2024-2025学年河南省南阳市南召县数学九上开学质量跟踪监视模拟试题【含答案】

    立即下载
    加入资料篮
    2024-2025学年河南省南阳市南召县数学九上开学质量跟踪监视模拟试题【含答案】第1页
    2024-2025学年河南省南阳市南召县数学九上开学质量跟踪监视模拟试题【含答案】第2页
    2024-2025学年河南省南阳市南召县数学九上开学质量跟踪监视模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年河南省南阳市南召县数学九上开学质量跟踪监视模拟试题【含答案】

    展开

    这是一份2024-2025学年河南省南阳市南召县数学九上开学质量跟踪监视模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若分式的值为零,则x等于( )
    A.0B.2C.±2D.﹣2
    2、(4分)若关于x的一元二次方程(x-a)2=4,有一个根为1,则a的值是( ).
    A.3 B.1 C.-1 D.-1或3
    3、(4分)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )
    A.40°B.36°C.30°D.25°
    4、(4分)下列命题正确的个数是( )
    (1)若x2+kx+25是一个完全平方式,则k的值等于10;(2)正六边形的每个内角都等于相邻外角的2倍;(3)一组对边平行,一组对角相等的四边形是平行四边形;(4)顺次连结四边形的四边中点所得的四边形是平行四边形
    A.1B.2C.3D.4
    5、(4分)已知四边形ABCD是平行四边形,下列结果正确的是( )
    A.当AB=BC时,它是矩形B.时,它是菱形
    C.当∠ABC=90°时,它是菱形D.当AC=BD时,它是正方形
    6、(4分)若二次根式有意义,则a的取值范围是( )
    A.a<3B.a>3C.a≤3D.a≠3
    7、(4分)下列命题正确的是( )
    A.两条对角线互相平分且相等的四边形是菱形
    B.两条对角线互相平分且垂直的四边形是矩形
    C.两条对角线互相垂直且相等的四边形是正方形
    D.角平分线上的点到角两边的距离相等
    8、(4分)直线不经过【 】
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知m是方程x2﹣2018x+1=0的一个根,则代数式m2﹣2017m++3的值等于_____.
    10、(4分)已知:将直线y=x﹣1向上平移3个单位后得直线y=kx+b,则直线y=kx+b与x轴交点坐标为_____.
    11、(4分)如图所示,D,E分别是△ABC的边AB,AC的中点,且BC=7,则DE=______.
    12、(4分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.
    13、(4分)在菱形中,若,,则菱形的周长为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)申思同学最近在网上看到如下信息:
    总书记明确指示,要重点打造北京非首都功能疏解集中承载地,在河北适合地段规划建设一座以新发展理念引领的现代新型城区.雄安新区不同于一般意义上的新区,其定位是重点承接北京疏解出的与去全国政治中心、文化中心、国际交往中心、科技创新中心无关的城市功能,包括行政事业单位、总部企业、金融机构、高等院校、科研院所等.右图是北京、天津、保定和雄安新区的大致交通图,其中保定、天津和雄安新区可近似看作在一条直线上.申思同学想根据图中信息求出北京和保定之间的大致距离.
    他先画出如图示意图,其中AC=AB=BC=100,点C在线段BD上,他把CD近似当作40,来求AD的长.
    请帮申思同学解决这个问题.
    15、(8分)2019 年 7 月 1 日,《上海市生活垃圾管理条例》正式实施,生活垃圾按照“可回收物”、 “有害垃圾”、“湿垃圾”、“干垃圾”的分类标准.没有垃圾分类和未指定投放到指定垃圾桶内等会被罚款和行政处罚.垃圾分类制度即将在全国范围内实施,很多商家推出售卖垃圾分类桶,某商店经销垃圾分类桶.现有如下信息:
    信息 1:一个垃圾分类桶的售价比进价高 12 元;
    信息 2:卖 3 个垃圾分类桶的费用可进货该垃圾分类桶 4 个;
    请根据以上信息,解答下列问题:
    (1)该商品的进价和售价各多少元?
    (2)商店平均每天卖出垃圾分类桶 16 个.经调查发现,若销售单价每降低 1 元,每天可多售出 2 个.为了使每天获取更大的利润,垃圾分类桶的售价为多少元时,商店每天获取的利润最大?每天的最大利润是多少?
    16、(8分)(1)操作思考:如图1,在平面直角坐标系中,等腰Rt△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则①OA的长为 ;②点B的坐标为 (直接写结果);
    (2)感悟应用:如图2,在平面直角坐标系中,将等腰Rt△ACB如图放置,直角顶点
    C(-1,0),点A(0,4),试求直线AB的函数表达式;
    (3)拓展研究:如图3,在平面直角坐标系中,点B(4;3),过点B作BAy轴,垂足为点A;作BCx轴,垂足为点C,P是线段BC上的一个动点,点Q是直线上一动点.问是否存在以点P为直角顶点的等腰Rt△APQ,若存在,请求出此时P的坐标,若不存在,请说明理由.
    17、(10分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,5×5正方形方格纸图中,点A,B都在格点处.
    (1)请在图中作等腰△ABC,使其底边AC=2,且点C为格点;
    (2)在(1)的条件下,作出平行四边形ABDC,且D为格点,并直接写出平行四边形ABDC的面积.
    18、(10分)如图(甲),在正方形中,是上一点,是延长线上一点,且.
    (1)求证:;
    (2)在如图(甲)中,若在上,且,则成立吗?
    证明你的结论.(3)运用(1)(2)解答中积累的经验和知识,完成下题:
    如图(乙)四边形中,∥(>),,,点是上一点,且,,求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,△A1B1A2,△A2B2A3,△A3B3A4,...,△AnBnAn+1都是等腰直角三角形,其中点A1、A2、…、An,在x轴上,点B1、B2、…Bn在直线y=x上,已知OA1=1,则OA2019的长是_____.
    20、(4分)如图,在等腰梯形 ABCD 中,AD∥BC,AB=CD.点 P 为底边 BC 的延长线上任意一点,PE⊥AB 于 E,PF⊥DC 于 F,BM⊥DC 于 M.请你探究线段 PE、PF、BM 之间的数量关系:
    ______.
    21、(4分)已知y+1与x成正比例,则y是x的_____函数.
    22、(4分)在中,,,,则__________.
    23、(4分)将函数的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某校为提高学生的汉字书写能力,开展了“汉字听写”大赛.七、八年级各有150人参加比赛,为了解这两个年级参加比赛学生的成绩情况,从中各随机抽取10名学生的成绩,数据如下:
    七年级 88 94 90 94 84 94 99 94 99 100
    八年级 84 93 88 94 93 98 93 98 97 99
    整理数据:按如下分段整理样本数据并补全表格:
    分析数据:补全下列表格中的统计量:
    得出结论:你认为抽取的学生哪个年级的成绩较为稳定?并说明理由.
    25、(10分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
    (1)本次接受调查的跳水运动员人数为 ,图①中m的值为 ;
    (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
    26、(12分)某班“数学兴趣小组”对函数的图象和性质进行了探究,过程如下,请补充完整.
    (1)自变量的取值范围是全体实数,与的几组对应值列表如下:
    其中,__________.
    (2)根据上表的数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
    (3)观察图象,写出该函数的两条性质:
    ①____________________________________________________________
    ②____________________________________________________________
    (4)进一步探究函数图象发现:
    ①方程的解是__________.
    ②方程的解是__________.
    ③关于的方程有两个不相等实数根,则的取值范围是__________.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    分式的值是1的条件是:分子为1,分母不为1.
    【详解】
    ∵x2-4=1,
    ∴x=±2,
    当x=2时,2x-4=1,∴x=2不满足条件.
    当x=-2时,2x-4≠1,∴当x=-2时分式的值是1.
    故选:D.
    本题考查了分式值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.
    2、D
    【解析】
    试题分析:由题意把代入方程,即可得到关于a的方程,再解出即可.
    由题意得,解得-1或3,故选D.
    考点:方程的根的定义,解一元二次方程
    点评:解题的关键是熟练掌握方程的根的定义:方程的根就是使方程左右两边相等的未知数的值.
    3、B
    【解析】
    根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.
    【详解】
    解:∵AB=AC,
    ∴∠B=∠C,
    ∵CD=DA,
    ∴∠C=∠DAC,
    ∵BA=BD,
    ∴∠BDA=∠BAD=2∠C=2∠B,
    设∠B=α,则∠BDA=∠BAD=2α,
    又∵∠B+∠BAD+∠BDA=180°,
    ∴α+2α+2α=180°,
    ∴α=36°,即∠B=36°,
    故选:B.
    本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.
    4、C
    【解析】
    根据完全平方式、正六边形、平行四边形的判定判断即可
    【详解】
    (1)若x2+kx+25是一个完全平方式,则k的值等于±10,是假命题;
    (2)正六边形的每个内角都等于相邻外角的2倍,是真命题;
    (3)一组对边平行,一组对角相等的四边形是平行四边形,是真命题;
    (4)顺次连结四边形的四边中点所得的四边形是平行四边形,是真命题;
    故选C
    此题考查完全平方式、正六边形、平行四边形的判定,掌握其性质是解题关键
    5、B
    【解析】
    根据矩形、菱形、正方形的的判定方法判断即可.
    【详解】
    解:A、当AB=BC时,平行四边形ABCD为菱形,所以A选项的结论错误;
    B、当AC⊥BD时,平行四边形ABCD为菱形,所以B选项的结论正确;
    C、当∠ABC=90°时,平行四边形ABCD为矩形,所以C选项的结论错误;
    D、当AC=BD时,平行四边形ABCD为矩形,所以D选项的结论不正确.
    故选:B.
    本题考查了正方形的判定,也考查了菱形、矩形的判定方法.正方形的判定方法:先判定四边形是矩形,再判定这个矩形有一组邻边相等;先判定四边形是菱形,再判定这个菱形有一个角为直角.
    6、C
    【解析】
    根据被开方数是非负数,可得答案.
    【详解】
    解:由题意得,
    3−a⩾0,解得a⩽3,
    故选:C.
    本题主要考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
    7、D
    【解析】
    根据菱形、矩形、正方形的判定和角平分线的性质判断即可.
    【详解】
    解:、两条对角线互相平分且垂直的四边形是菱形,故选项是假命题;
    、两条对角线互相平分且相等的四边形是矩形,故选项是假命题;
    、两条对角线互相平分且垂直且相等的四边形是正方形,故选项是假命题;
    、角平分线上的点到角两边的距离相等,故选项是真命题;
    故选:.
    本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
    8、B。
    【解析】一次函数图象与系数的关系。
    【分析】∵,∴
    ∴的图象经过第一、三、四象限,不经过第二象限。故选B。
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    利用m是方程x2﹣2018x+1=0的一个根得到m2=2018m﹣1,m2+1=2018m,利用整体代入的方法得到原式=m++2,然后通分后再利用整体代入的方法计算.
    【详解】
    解:∵m是方程x2﹣2018x+1=0的一个根,
    ∴m2﹣2018m+1=0,
    ∴m2=2018m﹣1,m2+1=2018m,
    ∴m2﹣2017m++3=2018m﹣1﹣2017m++3
    =m++2
    =+2
    =+2
    =2018+2
    =1.
    故答案为:1.
    本题考查一元二次方程的解得定义,代数式求值,分式的加减.掌握整体思想,整体代入是解题关键.
    10、(﹣4,0).
    【解析】
    根据平行直线的解析式的k值相等,向上平移3个单位,横坐标不变,纵坐标加3,写出平移后的解析式,然后令y=0,即可得解.
    【详解】
    ∵直线y=x﹣1向上平移3个单位后得直线y=kx+b,
    ∴直线y=kx+b的解析式为:y=x+2,
    令y=0,则0=x+2,
    解得:x=﹣4,
    ∴直线y=kx+b与x轴的交点坐标为(﹣4,0).
    故答案为:(﹣4,0).
    本题主要考查直线平移的规律以及直线与x轴交点的坐标,掌握平行直线的解析式的k值相等,是解题的关键.
    11、3.1
    【解析】
    根据三角形的中位线定理解答即可.
    【详解】
    解:∵D,E分别是△ABC的边AB,AC的中点,且BC=7,
    ∴.
    故答案为:3.1.
    本题考查了三角形的中位线定理,属于基本题型,熟练掌握该定理是解题关键.
    12、
    【解析】
    过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.
    【详解】
    如图,过点D作DF⊥BC于点F,
    ∵四边形ABCD是菱形,
    ∴BC=CD,AD∥BC,
    ∵∠DEB=90°,AD∥BC,
    ∴∠EBC=90°,且∠DEB=90°,DF⊥BC,
    ∴四边形DEBF是矩形,
    ∴DF=BE,DE=BF,
    ∵点C的横坐标为5,BE=3DE,
    ∴BC=CD=5,DF=3DE,CF=5﹣DE,
    ∵CD2=DF2+CF2,
    ∴25=9DE2+(5﹣DE)2,
    ∴DE=1,
    ∴DF=BE=3,
    设点C(5,m),点D(1,m+3),
    ∵反比例函数y=图象过点C,D,
    ∴5m=1×(m+3),
    ∴m=,
    ∴点C(5,),
    ∴k=5×=,
    故答案为:
    本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.
    13、8
    【解析】
    由菱形的,可得∠BAD=∠BCD =60°,则在Rt△AOB中根据勾股定理以及30°所对的直角边是斜边的一半,列方程可以求出AB的长,即可求出菱形周长.
    【详解】
    解:如图,
    ∵ABCD为菱形
    ∴∠BAD=∠BCD,BD⊥AC,O为AC、BD中点
    又∵
    ∴∠BAD=∠BCD =60°
    ∴∠BAC=∠BAD=30°
    在Rt△AOB中,BO=AB,
    设BO=x,根据勾股定理可得:
    解得x=1
    ∴AB=2x=2
    ∴菱形周长为8
    故答案为8
    本题考查菱形的性质综合应用,灵活应用菱形性质是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    试题分析:作,构造直角三角形,先求出DE和AE的长度,再根据勾股定理求得AD的长度.
    试题解析:
    作.
    ∵,
    ∴为等边三角形.
    ∵,
    ∴,,
    ∴,
    ∴.
    ∵中,

    ∵,
    ∴.
    ∵中,


    ∵,
    ∴.

    15、(1)进价为36元,售价为48元;(2)当售价为46元时,商店每天获利最大,最大利润为:200元.
    【解析】
    (1)根据题意,设一个垃圾分类桶的进价为x元,则售价为(x+12)元,列出方程,解方程即可得到答案;
    (2)根据题意,可设每天获利为w,当垃圾分类桶的售价为y元时,每天获利w最大,然后列出方程,解出方程即可得到答案.
    【详解】
    解:(1)设一个垃圾分类桶的进价为x元,则售价为(x+12)元,则
    ,解得:,
    ∴售价为:36+12=48元.
    答:一个垃圾分类桶的进价为36元,售价为48元;
    (2)设每天获利为w,当一个垃圾分类桶的售价为y元时,每天获利最大,则

    整理得:;
    ∴当 时,商店每天获利最大,最大利润为:200元.
    该题以二次函数为载体,以二元一次方程组的应用、二次函数的性质及其应用为考查的核心构造而成;解题的关键是深入把握题意,准确找出命题中隐含的数量关系;灵活运用有关性质来分析、判断、解答.
    16、(1),(2)(3),
    【解析】
    由可得,,,,易证≌,,,因此;
    同可证≌,,,,求得最后代入求出一次函数解析式即可;
    分两种情况讨论当点Q在x轴下方时,当点Q在x轴上方时根据等腰构建一线三直角,从而求解.
    【详解】
    如图1,作轴,轴.

    ,,

    ≌,
    ,,

    故答案为,;
    如图2,过点B作轴.

    ≌,
    ,,

    设直线AB的表达式为
    将和代入,得

    解得,
    直线AB的函数表达式.
    如图3,设,分两种情况:
    当点Q在x轴下方时,轴,与BP的延长线交于点.


    在与中


    ,,

    解得
    此时点P与点C重合,

    当点Q在x轴上方时,轴,与PB的延长线交于点.
    同理可证≌.
    同理求得
    综上,P的坐标为:,
    本题考查了一次函数与三角形的全等,熟练掌握一次函数的性质与三角形全等判定是解题的关键.
    17、 (1)见解析;(2)画图见解析;其面积为8.
    【解析】
    (1) 根据每个正方形的边长为1,利用勾股定理确定C点的位置(使AC=2),再连接AB,AC即可.
    (2)根据平行四边形的性质确定点D连接BD,CD即可得到所求四边形;再根据平行四边形面积公式即可求出.
    【详解】
    (1)如图,△ABC即为所求.
    (2)如图,平行四边形ABDC即为所求,其面积为8.
    本题考查了等腰三角形的性质以及平行四边形的性质,熟练掌握性质定理是解题的关键.
    18、(1)见解析;(1)成立,理由见解析;(3)5
    【解析】
    分析:(1)因为ABCD为正方形,所以CB=CD,∠B=∠CDA=90°,又因为DF=BE,则△BCE≌△DCF,即可求证CE=CF;
    (1)因为∠BCD=90°,∠GCE=45°,则有∠BCE+∠GCD=45°,又因为△BCE≌△DCF,所以∠ECG=∠FCG,CE=CF,CG=CG,则△ECG≌△FCG,故GE=BE+GD成立;
    (3)①过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.
    详解:(1)在正方形ABCD中 CB=CD,∠B=∠CDA=90°,
    ∴∠CDF=∠B=90°.
    在△BCE和△DCF中,
    ∴△BCE≌△DCF(SAS).
    ∴CE=CF.
    (1)GE=BE+GD成立.理由如下:
    ∵∠BCD=90°,∠GCE=45°,
    ∴∠BCE+∠GCD=45°.
    ∵△BCE≌△DCF(已证),
    ∴∠BCE=∠DCF.
    ∴∠GCF=∠GCD+∠DCF=∠GCD+∠BCE=45°.
    ∴∠ECG=∠FCG=45°.
    在△ECG和△FCG中,

    ∴△ECG≌△FCG(SAS).
    ∴GE=FG.
    ∵FG=GD+DF,
    ∴GE=BE+GD.
    (3)①如图1,过点C作CG⊥AD,交AD的延长线于点G,
    由(1)和题设知:DE=DG+BE,
    设DG=x,则AD=6-x,DE=x+3,
    在Rt△ADE中,由勾股定理得:AD1+AE1=DE1,
    ∴(6-x)1+31=(x+3)1,
    解得x=1.
    ∴DE=1+3=5.
    点睛:此题是一道把等腰三角形的判定、勾股定理、正方形的判定和全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据一次函数的性质可得∠B1OA1=45°,然后求出△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,然后根据等腰直角三角形斜边上的高等于斜边的一半求出OA3,同理求出OA4,然后根据变化规律写出即可.
    【详解】
    解:∵直线为y=x,
    ∴∠B1OA1=45°,
    ∵△A2B2A3,
    ∴B2A2⊥x轴,∠B2A3A2=45°,
    ∴△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,
    ∴OA3=2A2B2=2OA2=2×2=4,
    同理可求OA4=2OA3=2×4=23,
    …,
    所以,OA2019=1.
    故答案为:1.
    本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,熟记性质并确定出等腰直角三角形是解题的关键.
    20、PE-PF=BM.
    【解析】
    过点B作BH∥CD,交PF的延长线于点H,易证四边形BMFH是平行四边形,于是有FH=BM,再用AAS证明△PBE≌△PBH,可得PH=PE,继而得到结论.
    【详解】
    解:PE-PF=BM. 理由如下:
    过点B作BH∥CD,交PF的延长线于点H,如图
    ∴∠PBH=∠DCB,
    ∵PF⊥CD,BM⊥CD,
    ∴BM∥FH,PH⊥BH,
    ∴四边形BMFH是平行四边形,∠H=90°,
    ∴FH=BM,
    ∵等腰梯形ABCD中,AD∥BC,AB=DC,
    ∴∠ABC=∠DCB,
    ∴∠ABC=∠PBH,
    ∵PE⊥AB,
    ∴∠PEB=∠H=90°,又PB为公共边,
    ∴△PBE≌△PBH(AAS),
    ∴PH=PE,
    ∴PE=PF+FH=PF+BM.
    即PE-PF=BM.
    本题考查了等腰梯形的性质、平行四边形的判定与性质和全等三角形的判定与性质,解题的关键是正确添加辅助线,构造所需的平行四边形和全等三角形.
    21、一次
    【解析】
    将y+1看做一个整体,根据正比例函数的定义列出解析式解答即可.
    【详解】
    y+1与x成正比例,
    则y+1=kx,
    即y=kx-1,
    符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.
    22、1
    【解析】
    根据直角三角形中,30°所对的直角边是斜边的一半进行计算.
    【详解】
    ∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,
    ∴AB=1BC=1.
    故答案为:1.
    此题考查直角三角形的性质,解题关键在于掌握30°所对的直角边是斜边的一半.
    23、y=-4x-1
    【解析】
    根据函数图象的平移规律:上加下减,可得答案.
    【详解】
    解:将函数y=-4x的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是y=-4x-1.
    故答案为:y=-4x-1.
    本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、1,1,93.5,1;八年级的成绩较为稳定.
    【解析】
    根据中位数,众数和方差的定义即可得到结论.
    【详解】
    整理数据:按如下分段整理样本数据并补全表格:
    分析数据:补全下列表格中的统计量:
    八年级的成绩较为稳定,理由:∵七年级的方差=24.2,八年级的方差=20.4,24.2>20.4,∴八年级的成绩较为稳定.
    故答案为:1,1,93.5,1.
    本题考查了中位数,众数,方差,熟练掌握中位线,众数和方差的定义是解题的关键.
    25、(1)40人;1;(2)平均数是15;众数16;中位数15.
    【解析】
    (1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.
    【详解】
    解:(1)4÷10%=40(人),
    m=100-27.5-25-7.5-10=1;
    故答案为40,1.
    (2)观察条形统计图,
    ∵,
    ∴这组数据的平均数为15;
    ∵在这组数据中,16出现了12次,出现的次数最多,
    ∴这组数据的众数为16;
    ∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,
    ∴这组数据的中位数为15.
    本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.
    26、(1)1;(2)见解析;(1)①函数值y≥2函数值y≥2;②当x>1时,y随x的增大而增大;(4)①;②或;③.
    【解析】
    (1)求出x=-2时的函数值即可;
    (2)利用描点法画出函数图象即可;
    (1)结合图象写出两个性质即可;
    (4)分别求出方程的解即可解决问题;
    【详解】
    解:(1)x=-2时,y=|x-1|=1,故m=1,故答案为1.
    (2)函数图象如图所示:
    (1)①函数值y≥2,②当x>1时,y随x的增大而增大;
    故答案为函数值y≥2;当x>1时,y随x的增大而增大;
    (4)①方程|x-1|=2的解是x=1
    ②方程|x-1|=1.5的解是x=2.5或-2.5
    ③关于x的方程|x-1|=a有两个实数根,则a的取值范围是a>2,
    故答案为x=1,x=2.5或-2.5,a>2.
    本题考查一次函数的图象与性质、一次函数与一元一次方程的关系等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
    题号





    总分
    得分

    0
    1
    2
    3
    4
    5


    4
    2
    1
    0
    1
    2
    3
    4

    相关试卷

    2024-2025学年河南省罗山县数学九上开学质量跟踪监视试题【含答案】:

    这是一份2024-2025学年河南省罗山县数学九上开学质量跟踪监视试题【含答案】,共29页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2024-2025学年河南省鹿邑城郊乡阳光中学数学九上开学质量跟踪监视试题【含答案】:

    这是一份2024-2025学年河南省鹿邑城郊乡阳光中学数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年河北省邯郸市育华中学九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年河北省邯郸市育华中学九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map