2024-2025学年河南省平顶山市叶县九年级数学第一学期开学复习检测试题【含答案】
展开
这是一份2024-2025学年河南省平顶山市叶县九年级数学第一学期开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,则折痕EF的长为( )
A.B.C.5D.6
2、(4分)下列图形中,既是中心对称图形也是轴对称图形的是( )
A.B.C.D.
3、(4分)随机抽取10名八年级同学调查每天使用零花钱的情况,结果如表,则这10名同学每天使用零花钱的中位数是
A.2元B.3元C.4元D.5元
4、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.等边三角形B.等腰直角三角形
C.平行四边形D.菱形
5、(4分)一组数据的众数、中位数分别是( )
A.B.C.D.
6、(4分)如图,在长为31m,宽为10m的矩形空地上修建同样宽的道路(图中阴影部分),剩余的空地上种植草坪,使草坪的面积为540m1.设道路的宽为xm,根据题意,下面列出的方程正确的是( )
A.31x+10x﹣1x1=540
B.31x+10x=31×10﹣540
C.(31﹣x)(10﹣x)=540
D.(31﹣x)(10﹣x)=31×10﹣540
7、(4分)在一个直角三角形中,如果斜边长是10,一条直角边长是6,那么另一条直角边长是( ).
A.6B.7C.8D.9
8、(4分)下列方程中,是一元二次方程的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕,且,那么该矩形的周长为______cm.
10、(4分)化简:=______.
11、(4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是 .
12、(4分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.
13、(4分)若分式值为0,则的值为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.
15、(8分)如图,,,点在轴上,且.
(1)求点的坐标,并画出;
(2)求的面积;
(3)在轴上是否存在点,使以三点为顶点的三角形的面积为10?若存在,请直接写出点的坐标;若不存在,请说明理由.
16、(8分)如图,在平行四边形ABCD中,AE平分∠BAD交BC于点E.
(1)作CF平分∠BCD交AD于点F(用尺规作图,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,求证:△ABE≌△CDF.
17、(10分)化简:,再从不等式中选取一个合适的整数代入求值.
18、(10分)已知一次函数图象经过和两点
(1)求此一次函数的解析式;
(2)若点在函数图象上,求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.
20、(4分)马拉松赛选手分甲、乙两组运动员进行了艰苦的训练,他们在相同条件下各10次比赛,成绩的平均数相同,方差分别为0.25,0.21,则成绩较为稳定的是_________(选填“甲”或“乙)
21、(4分)为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量与燃烧时间(分钟)成正比例;烧灼后,与成反比例(如图所示).现测得药物分钟燃烧完,此时教室内每立方米空气含药量为.研究表明当每立方米空气中含药量低于时,对人体方能无毒作用,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室.
22、(4分)分解因式:______.
23、(4分)如图菱形 ABCD 的对角线 AC,BD 的长分别为 12 cm,16 cm,则这个菱形的周长为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线分别与轴,轴交于两点,与直线交于点.
(1)点的坐标为__________,点的坐标为__________
(2)在线段上有一点,过点作轴的平行线交直线于点,设点的横坐标为,当为何值时,四边形是平行四边形.
25、(10分)如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).
(1)求证:AF∥CE;
(2)当t为何值时,四边形EHFG为菱形;
(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.
26、(12分)如图,在中,,于,平分,分别交,于,,于.连接,求证:四边形是菱形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:EF与BD相交于点H,
∵将矩形沿EF折叠,B,D重合,
∴∠DHE=∠A=90°,
又∵∠EDH=∠BDA,
∴△EDH∽△BDA,
∵AD=BC=8,CD=AB=6,
∴BD=10,
∴DH=5,
∴EH=,
∴EF=.
故选A.
考点:三角形相似.
【详解】
请在此输入详解!
2、D
【解析】
轴对称图形是把一个图形沿一条直线折叠,直线两旁的部分能够互相重合,判断四个图形,看看哪些是轴对称图形;中心对称图形是把一个图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合,判断四个图形,看看哪些是中心对称图形;综合上述分析,即可选出既是中心对称图形又是轴对称图形的图形,从而解答本题.
【详解】
A、是轴对称图形,但不是中心对称图形,不符合题意;
B、不是轴对称图形,是中心对称图形,不符合题意;
C、是轴对称图形,但不是中心对称图形,不符合题意;
D、既是中心对称图形,又是轴对称图形,符合题意.
故选D.
此题考查中心对称图形和轴对称图形,解决本题的关键是熟练地掌握中心对称图形和轴对称图形的判断方法;
3、B
【解析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
解:共10名同学,中位数是第5和第6的平均数,故中位数为3,
故选:.
本题考查了中位数,正确理解中位数的意义是解题的关键.
4、D
【解析】
按照轴对称图形和中心对称图形的定义逐项判断即可.
【详解】
解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;
B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;
C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
D、菱形是轴对称图形,也是中心对称图形,故本选项正确.
故选:D.
本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是解题的关键.
5、B
【解析】
利用众数和中位数的定义分析,即可得出.
【详解】
众数:出现次数最多的数,故众数为5;
中位数:从小到大排列,中间的数.将数据从小到大排列:2,3,4,5,5;故中位数为4;
故选B
本题考查了统计中的众数和中位数,属于基础题,注意求中位数时,要重新排列数字,再找中位数.
6、C
【解析】
把道路进行平移,可得草坪面积=长为31﹣x,宽为10﹣x的面积,把相关数值代入即可求解.
【详解】
解:把道路进行平移,可得草坪面积为一个矩形,长为31﹣x,宽为10﹣x,
∴可列方程为:(31﹣x)(10﹣x)=2.
故选:C.
本题考查了由实际问题抽象出一元二次方程,找准等量关系,是正确列出一元二次方程的关键.
7、C
【解析】
本题直接根据勾股定理求解即可.
【详解】
由勾股定理的变形公式可得:另一直角边长==1.
故选C.
本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.
8、C
【解析】
根据一元二次方程的定义即可求解.
【详解】
A. 是一元一次方程,故错误;
B. 含有两个未知数,故错误;
C. 为一元二次方程,正确;
D. 含有分式,故错误,
故选C.
此题主要考查一元二次方程的定义,解题的关键是熟知一元二次方程的特点.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、72
【解析】
根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据,设CE=3k,CF=4k,推出EF=DE=5k,AB=CD=8k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.
【详解】
解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,
∵△ADE沿AE对折,点D的对称点F恰好落在BC上,
∴∠AFE=∠D=90°,AD=AF,
∵∠EFC+∠AFB=180°-90°=90°,
∠BAF+∠AFB=90°,
∴∠BAF=∠EFC,
∵,
∴设CE=3k,CF=4k,
∴,
∵∠BAF=∠EFC,且∠B=∠C=90°
∴△ABF∽△FCE,
∴,即,
∴BF=6k,
∴BC=BF+CF=10k=AD,
∵AE2=AD2+DE2,
∴500=100k2+25k2,
∴k=2
∴AB=CD =16cm,BC=AD=20cm,
∴四边形ABCD的周长=72cm
故答案为:72.
本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.
10、a+1
【解析】
先根据同分母分式加减法进行计算,再约分化简分式即可.
【详解】
.
故答案为a+1
本题考核知识点:分式的加减.解题关键点:熟记分式的加减法则,分式的约分.
11、24
【解析】∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,
∴口袋中白色球的个数很可能是(1-15%-45%)×60=24个.
12、8.
【解析】
直接利用菱形的性质结合勾股定理得出菱形的另一条对角线的长,进而利用菱形面积求法得出答案.
【详解】
如图所示:
∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,
∴可得AD=AB,故△ABD是等边三角形,
则AB=AD=4,
故BO=DO=2,
则AO=,
故AC=4,
则菱形ABCD的面积是:×4×4=8.
故答案为:8.
此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.
13、-1
【解析】
根据分式值为0的条件进行求解即可.
【详解】
由题意得,x+1=0,
解得x=-1,
故答案为:-1.
本题考查了分式值为0的条件,熟练掌握分式值为0时,分子为0且分母不为0是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、6
【解析】
由勾股定理可求AB的长,由折叠的性质可得AC=AE=6cm,∠DEB=90°,由勾股定理可求DE的长,由三角形的面积公式可求解.
【详解】
解:∵AC=6cm,BC=8cm,
∴,
∵将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,
∴AC=AE=6cm,∠DEB=90°
∴BE=10-6=4cm
设CD=DE=x,
则在Rt△DEB中,
,
解得:,
即DE=3.
∴△BDE的面积为:.
本题考查了翻折变换,勾股定理,三角形面积公式,熟练掌握折叠的性质是本题的关键.
15、 (1)点的坐标为,,画图见解析;(2) 6;(3)点的坐标为或
【解析】
(1)分点B在点A的左边和右边两种情况解答;
(2)利用三角形的面积公式列式计算即可得解;
(3)利用三角形的面积公式列式求出点P到x轴的距离,然后分两种情况写出点P的坐标即可.
【详解】
(1)点B在点A的右边时,-1+3=2,
点B在点A的左边时,-1-3=-4,
所以,B的坐标为(2,0)或(-4,0),
如图所示:
(2)△ABC的面积=×3×4=6;
(3)设点P到x轴的距离为h,
则×3h=10,
解得h=,
点P在y轴正半轴时,P(0,),
点P在y轴负半轴时,P(0,-),
综上所述,点P的坐标为(0,)或(0,-).
本题考查了坐标与图形性质,主要利用了三角形的面积,难点在于要分情况讨论.
16、见解析
【解析】
(1)以点C为圆心,任意长为半径画弧,交CD,BC于两点,分别以这两点为圆心,大于这两点距离的一半为半径画弧,在平行四边形内交于一点,过点C以及这个交点作射线,交AD于点F即可;
(2)根据ASA即可证明:△ABE≌△CDF.
【详解】
(1)如图所示:CF即为所求作的;
(2)∵四边形ABCD是平行四边形,
∴AB=CD,∠B=∠D,∠BAD=∠BCD,
∵AE平分∠BAD,CF平分∠BCD,
∴∠BAE=∠DCF,
在△ABE和△CDF中
,
∴△ABE≌△CDF.
本题考查了平行四边形的性质、全等三角形的判定、尺规作图—作角平分线,熟练掌握尺规作图的方法以及全等三角形的判定方法是解题的关键.
17、,1
【解析】
现将括号内的式子通分,再因式分解,然后约分,化简后将符合题意的值代入即可.
【详解】
原式
选时,原式
此题考查分式的化简求值、一元一次不等式组的整数解,解题关键在于取合适的整数值求值时,要特注意原式及化简过程中的每一步都有意义.
18、(1)(2)
【解析】
(1)用待定系数法,设函数解析式为y=kx+b,将两点代入可求出k和b的值,进而可得出答案.
(2)将点(m,2)代入可得关于m的方程,解出即可.
【详解】
解:(1)设一次函数的解析式为,
则有,
解得:,
一次函数的解析式为;
(2)点在一次函数图象上
,
.
本题考查待定系数法求一次函数解析式和一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法求一次函数解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4,0)
【解析】
根据抛物线p=ax2−10ax+8(a>0)经过点C、D和二次函数图象具有对称性,可以求得该抛物线顶点的横坐标和CD的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.
【详解】
解:∵抛物线p=ax2−10ax+8=a(x−5)2−25a+8,
∴该抛物线的顶点的横坐标是x=5,当x=0时,y=8,
∴点D的坐标为:(0,8),
∴OD=8,
∵抛物线p=ax2−10ax+8(a>0)经过点C、D,CD∥AB∥x轴,
∴CD=5×2=10,
∴AD=10,
∵∠AOD=90°,OD=8,AD=10,
∴AO=,
∵AB=10,
∴OB=10−AO=10−6=4,
∴点B的坐标为(4,0),
故答案为:(4,0)
本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.
20、乙
【解析】
根据方差的意义判断即可.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵甲乙的方差分别为1.25,1.21
∴成绩比较稳定的是乙
故答案为:乙
运用了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
21、1
【解析】
先求得反比例函数的解析式,然后把代入反比例函数解析式,求出相应的即可;
【详解】
解:设药物燃烧后与之间的解析式,把点代入得,解得,
关于的函数式为:;
当时,由;得,所以1分钟后学生才可进入教室;
故答案为:1.
本题考查了一次函数与反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
22、
【解析】
根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.
【详解】
,
=,
=,
故答案为:.
本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
23、40cm
【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=×12=6cm,
OB=BD=×16=8cm,
根据勾股定理得,,
所以,这个菱形的周长=4×10=40cm.
故答案为:40cm.
本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.
二、解答题(本大题共3个小题,共30分)
24、(1)(8,0) , (0,4) ;(2)当m为时,四边形OBEF是平行四边形.
【解析】
(1)由点C的坐标利用待定系数法即可求出直线的解析式,再分别令直线的解析式中x=0、y=0求出对应的y、x值,即可得出点A、B的坐标;
(2)由点C的坐标利用待定系数法即可求出直线的解析式,结合点E的横坐标即可得出点E、F的坐标,再根据平行四边形的性质即可得出关于m的一元一次方程,解方程即可得出结论;
【详解】
解:(1)将点C(4,2)代入y=− x+b中,
得:2=−2+b,解得:b=4,
∴直线为y=−x+4.
令y=−x+4中x=0,则y=4,
∴B(0,4);
令y=−x+4中y=0,则x=8,
∴A(8,0).
故答案为:(8,0)(0,4)
(2)将C(4,2)分别代入y=-x+b, y=kx-1,得b=4,k=2.
∴直线l1的解析式为y=-x+4,直线l2的解析式为y=2x-1.
∵点E的横坐标为m,
∴点E的坐标为(m,-m+4),点F的坐标为(m,2m-1).
∴EF=-m+4-(2m-1)=-m+2.
∵四边形OBEF是平行四边形,
∴EF=OB,即-m+2=4.
解得m=.
∴当m为时,四边形OBEF是平行四边形.
此题考查一次函数综合题,解题关键在于把已知点代入解析式
25、(1)证明见解析;(2)t=1,(3)不存在某个时刻t,使四边形EHFG为矩形.
【解析】
(1)根据菱形的性质得到∠B=∠D,AD=BC,AB∥DC,推出△ADF≌△CBE,根据全等三角形的性质得到∠DFA=∠BEC,根据平行线的判定定理即可得到结论;
(2)过D作DM⊥AB于M,连接GH,EF,推出四边形AECF是平行四边形,根据菱形的判定定理即可得到四边形EGFH是菱形,证得四边形DMEF是矩形,于是得到ME=DF=t列方程即可得到结论;
(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,根据矩形的性质列方程即可得到结果.
【详解】
(1)证明:∵动点E、F同时运动且速度相等,
∴DF=BE,
∵四边形ABCD是菱形,
∴∠B=∠D,AD=BC,AB∥DC,
在△ADF与△CBE中,
∴△ADF≌△CBE,
∴∠DFA=∠BEC,
∵AB∥DC,
∴∠DFA=∠FAB,
∴∠FAB=∠BEC,
∴AF∥CE;
(2)过D作DM⊥AB于M,连接GH,EF,
∴DF=BE=t,
∵AF∥CE,AB∥CD,
∴四边形AECF是平行四边形,
∵G、H是AF、CE的中点,
∴GH∥AB,
∵四边形EGFH是菱形,
∴GH⊥EF,
∴EF⊥AB,∠FEM=90°,
∵DM⊥AB,
∴DM∥EF,
∴四边形DMEF是矩形,
∴ME=DF=t,
∵AD=4,∠DAB=60°,DM⊥AB,
∴
∴BE=4﹣2﹣t=t,
∴t=1,
(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,
∵四边形EHFG为矩形,
∴EF=GH,
∴EF2=GH2,
即解得t=0,0<t<4,
∴与原题设矛盾,
∴不存在某个时刻t,使四边形EHFG为矩形.
属于四边形的综合题,考查全等三角形的判定与性质,菱形的性质,矩形的判定等,掌握菱形的性质,矩形的判定是解题的关键.
26、详见解析
【解析】
求出CE=EH,AC=AH,证△CAF≌△HAF,推出∠ACD=∠AHF,求出∠B=∠ACD=∠FHA,推出HF∥CE,推出CF∥EH,得出平行四边形CFHE,根据菱形判定推出即可.
【详解】
∵∠ACB=90°,AE平分∠BAC,EH⊥AB,
∴CE=EH,
在Rt△ACE和Rt△AHE中,AE=AE,CE=EH,
∴Rt△ACE≌ Rt△AHE(HL),
∴AC=AH,
∵AE平分∠CAB,
∴∠CAF=∠HAF,
在△CAF和△HAF中,
,
∴△CAF≌△HAF(SAS),
∴∠ACD=∠AHF,
∵CD⊥AB,∠ACB=90°,
∴∠CDA=∠ACB=90°,
∴∠B+∠CAB=90°,∠CAB+∠ACD=90°,
∴∠ACD=∠B=∠AHF,
∴FH∥CE,
∵CD⊥AB,EH⊥AB,
∴CF∥EH,
∴四边形CFHE是平行四边形,
∵CE=EH,
∴四边形CFHE是菱形.
本题考查了平行四边形的性质和判定,菱形的判定,三角形的内角和定理,全等三角形的性质和判定,角平分线性质等知识点的应用,熟练掌握相关知识是解题的关键.
题号
一
二
三
四
五
总分
得分
每天使用零花钱情况
单位(元
2
3
4
5
人数
1
5
2
2
相关试卷
这是一份2024-2025学年河南省辉县九年级数学第一学期开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省扶沟县九年级数学第一学期开学检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省平顶山市叶县2023-2024学年九年级上学期期末数学试题,共27页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。