2024-2025学年黑龙江省八五八农场学校数学九年级第一学期开学教学质量检测模拟试题【含答案】
展开
这是一份2024-2025学年黑龙江省八五八农场学校数学九年级第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.队员1B.队员2C.队员3D.队员4
2、(4分)如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为( )
A.12B.3+3C.6+3D.6
3、(4分)(2016山西省)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是( )
A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH
4、(4分)如图所示,已知P、R分别是四边形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么EF的长( )
A.逐渐增大B.逐渐变小
C.不变D.先增大,后变小
5、(4分)15名同学参加八年级数学竞赛初赛,他们的得分互不相同,按从高分到低分的原则,录取前8名同学参加复赛,现在小聪同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )
A.平均数B.中位数C.众数D.方差
6、(4分)下列说法中正确的是 ( )
A.若,则B.是实数,且,则
C.有意义时,D.0.1的平方根是
7、(4分)下列命题中是真命题的是( )
A.若a>b,则3﹣a>3﹣b
B.如果ab=0,那么a=0,b=0
C.一组对边相等,另一组对边平行的四边形是平行四边形
D.有两个角为60°的三角形是等边三角形
8、(4分)如图,已知四边形是平行四边形,下列结论不正确的是( )
A.当时,它是矩形B.当时,它是菱形
C.当时,它是菱形D.当时,它是正方形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某市规定了每月用水不超过l8立方米和超过18立方米两种不同的收费标准,该市用户每月应交水费y(元)是用水x(立方米)的函数,其图象如图所示.已知小丽家3月份交了水费102元,则小丽家这个月用水量为_____立方米.
10、(4分)关于x的一元二次方程(2m-6)x2+x-m2+9=0的常数项为0,则实数m=_______
11、(4分)如图,把菱形沿折叠,使点落在上的点处,若,则的大小为 _____________.
12、(4分)计算6-15的结果是______.
13、(4分)已知一次函数y=kx+b的图象交y轴于正半轴,且y随x的增大而减小,请写出符合上述条件的一个解析式:_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校为了丰富学生的课外体育活动,购买了排球和跳绳,已知排球的单价是跳绳的单价的3倍,购买跳绳共花费了750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.
15、(8分)关于x的方程:-=1.
(1)当a=3时,求这个方程的解;
(2)若这个方程有增根,求a的值.
16、(8分)如图,甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.分析甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分钟)变化的函数图象,解决下列问题:
(1)求出甲、乙两人所行驶的路程S甲、S乙与t之间的关系式;(2)甲行驶10分钟后,甲、乙两人相距多少千米?
17、(10分)南开两江中学校初一年级在3月18日听了一堂“树的畅想”的景观设计课,随后在本年级学生中进行了活动收获度调查,采取随机抽样的调查方式进行网络问卷调查,问卷调查的结果分为“非常有收获”“比较有收获”“收获一般”“没有太大的收获”四个等级,分别记作A、B、C、D并根据调查结果绘制两幅不完整统计图:
(1)这次一共调查了_______名学生,并将条形统计图补充完整
(2)请在参与调查的这些学生中,随机抽取一名学生,求抽取到的学生对这次“树的畅想”的景观设计课活动收获度是“收获一般”或者“没有太大的收获”的概率
18、(10分)小明星期天从家里出发骑车去舅舅家做客,当他骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是他本次去舅舅家所用的时间与路程的关系式示意图,根据图中提供的信息回答下列问题:
(1)小明家到舅舅家的路程是______米,小明在商店停留了______分钟;
(2)在整个去舅舅家的途中哪个时间段小明骑车速度最快,最快的速度是多少米/
分?
(3)本次去舅舅家的行程中,小明一共行驶了多少米?一共用了多少分钟?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:=__________.
20、(4分)对于平面内任意一个凸四边形ABCD,现从以下四个关系式: ①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是_______.
21、(4分)如图,在的两边上分别截取、,使,分别以点、为圆心,长为半径作弧,两弧交于点;连接、、、.若,四边形的周长为,则的长为___________.
22、(4分)如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=20米,则AB的长为___________米.
23、(4分)如图,将矩形沿折叠,使点落在边上的点处,点落在点处,已知,连接,则__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:
(1)频数分布表中的 ;
(2)将上面的频数分布直方图补充完整;
(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有 人.
25、(10分)如图,平面直角坐标系中,直线AB交y轴于点A(0,1),交x轴于点B(3,0).直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,在点D的上方,设P(1,n).
(1)求直线AB的解析式;
(2)求△ABP的面积(用含n的代数式表示);
(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.
26、(12分)化简:÷(-a-2),并代入一个你喜欢的值求值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.
故选B.
考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、C
【解析】
利用垂直平分线的性质可得∠DAB=∠B=15°,可得∠ADC=30°,易得AD=BD=2AC,CD=AC,然后根据BC=BD+CD可得出结果.
【详解】
解:∵AB的垂直平分线l交BC于点D,
∴AD=DB,
∴∠B=∠DAB=15°,
∴∠ADC=30°,
∵∠C=90°,AC=3,
∴AD=6=BD,CD=3.
∴BC=BD+CD=6+3.
故选:C.
本题主要考查了垂直平分线的性质、含30°直角三角形的性质以及勾股定理,综合运用各性质定理是解答此题的关键.
3、D
【解析】
先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.
【详解】
解:设正方形的边长为2,则CD=2,CF=1
在直角三角形DCF中,
∴矩形DCGH为黄金矩形
故选:D.
本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.
4、C
【解析】
根据三角形的中位线的定理,首先表示EF的长度,再根据AR是定值,从而可得EF是定值.
【详解】
解:∵E、F分别是PA、PR的中点,
∴EF=AR,
∴EF的长不变,
故选:C.
本题主要考查三角形的中位线的性质,关键在于表示变化的直线.
5、B
【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于15个人中,第8名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
故选B.
本题考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
6、C
【解析】
根据算术平方根的意义,可知=|a|>0,故A不正确;
根据一个数的平方为非负数,可知a≥0,故不正确;
根据二次根式的有意义的条件可知-x≥0,求得x≤0,故正确;
根据一个数的平方等于a,那么这个数就是a的平方根,故不正确.
故选C
7、D
【解析】
分别判断各选项是否正确即可解答.
【详解】
解:A. 若a>b,则3﹣a<3﹣b,故A错误;
B. 如果ab=0,那么a=0或b=0,故B错误;
C. 一组对边相等,另一组对边平行的四边形不一定是平行四边形,故C错误;
D. 有两个角为60°的三角形是等边三角形,故D正确;
故选D.
本题考查了不等式的性质、平行四边形的判定、三角形的判定等知识,熟练掌握是解题的关键.
8、D
【解析】
根据已知及各个四边形的判定对各个选项进行分析从而得到最后答案.
【详解】
A. 正确,对角线相等的平行四边形是矩形;
B. 正确,对角线垂直的平行四边形是菱形;
C. 正确,有一组邻边相等的平行四边形叫做菱形;
D. 不正确,有一个角是直角的平行四边形叫做矩形。
故选D
此题考查平行四边形的性质,矩形的判定,正方形的判定,解题关键在于掌握判定法则
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据题意和函数图象中的数据可以求得当x>18时对应的函数解析式,根据102>54可知,小丽家用水量超过18立方米,从而可以解答本题.
【详解】
解:设当x>18时的函数解析式为y=kx+b,
图象过(18,54),(28,94)
∴,得
即当x>18时的函数解析式为:y=4x-18,
∵102>54,
∴小丽家用水量超过18立方米,
∴当y=102时,102=4x-18,得x=1,
故答案为:1.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
10、-3
【解析】
分析:根据常数项为0,且二次项系数不为0列式求解即可.
详解:由题意得,
,
解之得,
m=-3.
故答案为:-3.
点睛:本题考查了一元二次方程的定义,本题的易错点是有些同学只考虑常数项为0这一条件,而忽视了二次项系数不为0这一隐含的条件.
11、
【解析】
根据菱形性质,得到∠ADC=∠B=70°,从而得出∠AED=∠ADE,又因为AD∥BC,得到∠DAE=∠AEB,进而求出 ∠ADE=∠AED=55°,从而得到∠EDC
【详解】
∵四边形ABCD为菱形,∴∠ADC=∠B=70°,AD∥BC,AD=AB
∵AD=AB=AE,∴∠AED=∠ADE
∵AD∥BC,∴∠DAE=∠AEB=70°
∴∠ADE=∠AED=(180°-∠DAE)÷2=55°
∴∠EDC=70°-∠ADE=70°-55°=15°
本题主要考查菱形的基本性质,在计算过程中综合运用了等边对等角,三角形内角和定理等知识点
12、6-
【解析】
直接化简二次根式进而得出答案.
【详解】
解:原式=6-15×,
=6-.
故答案为:6-.
此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.
13、
【解析】
试题解析:∵一次函数y=kx+b的图象交y轴于正半轴,
∴b>0,
∵y随x的增大而减小,
∴k<0,
例如y=-x+1(答案不唯一,k<0且b>0即可).
考点:一次函数图象与系数的关系.
三、解答题(本大题共5个小题,共48分)
14、1元
【解析】
首先设跳绳的单价为x元,则排球的单价为3x元,根据题意可得等量关系:750元购进的跳绳个数﹣900元购进的排球个数=30,依此列出方程,再解方程可得答案.
【详解】
解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:,解方程,得x=1.
经检验:x=1是原方程的根,且符合题意.
答:跳绳的单价是1元.
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
15、(1)x=-2;(2)a=-3.
【解析】
(1)将a=3代入,求解-=1的根,验根即可,
(2)先求出增根是x=1,将分式化简为ax+1+2=x-1,代入x=1即可求出a的值.
【详解】
解:(1)当a=3时,原方程为-=1,
方程两边同乘x-1,得3x+1+2=x-1,
解这个整式方程得x=-2,
检验:将x=-2代入x-1=-2-1=-3≠0,
∴x=-2是原分式方程的解.
(2)方程两边同乘x-1,得ax+1+2=x-1,
若原方程有增根,则x-1=0,解得x=1,
将x=1代入整式方程得a+1+2=0,解得a=-3.
本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.
16、(1)S甲=0.5t;S乙=t﹣6;(2)甲行驶10分钟后,甲、乙两人相距1千米;
【解析】
分析:设出函数解析式,用待定系数法求解即可.
代入中的函数解析式即可求出.
详解:(1)由图象设甲的解析式为:S甲=kt,代入点,解得:k=0.5;
所以甲的解析式为:S甲=0.5t;
同理可设乙的解析式为:S乙=mt+b,代入点
可得:
解得: ,
所以乙的解析式为S乙
(2)当t=10时,S甲=0.5×10=5(千米),S乙=10-6=4(千米),
5-4=1(千米),
答:甲行驶10分钟后,甲、乙两人相距1千米.
点睛:考查一次函数的应用,掌握待定系数法求一次函数解析式是解题的关键.
17、(1)50;条形图见详解;(2)0.3
【解析】
(1)根据统计图中的数据可以求得本次调查的学生数,计算出选择C的学生数,从而可以将统计图补充完整;
(2)根据统计图中的数据可以分别求得抽取到的学生对这次“树的畅想”的景观设计课活动收获度是“收获一般”或者“没有太大的收获”的概率.
【详解】
解:(1)由题意可得,
本次调查的学生是:15÷30%=50(名),
故答案为:50,
选择C的学生有:50-15-20-5=10,补全的条形统计图如下图所示;
(2)由题可知:
“收获一般”或者“没有太大的收获”的概率为:;
本题考查概率公式、全面调查与抽样调查、扇形统计图、条形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
18、(1)1500,4;(2)小明在12-14分钟最快,速度为米/分.(3)14.
【解析】
(1)根据图象,路程的最大值即为小明家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;
(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;
(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小明一共行驶路程;读图即可求得本次去舅舅家的行程中,小明一共用的时间.
【详解】
解:(1)根据图象舅舅家纵坐标为1500,小明家的纵坐标为0,故小明家到舅舅家的路程是1500米;据题意,小明在商店停留的时间为从8分到12分,故小明在商店停留了4分钟.
(2)根据图象,时,直线最陡,故小明在12-14分钟最快,速度为米/分.
(3)读图可得:小明共行驶了米,共用了14分钟.
本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据分式的加法法则运算即可.
【详解】
原式====1,
故答案为1.
本题考查了分式的加法,分母相同分子相加是解决本题的重点.
20、
【解析】
从四个条件中选两个共有六种可能:①②、①③、①④、②③、②④、③④,
其中只有①②、①③和③④可以判断四边形ABCD是平行四边形,所以能够得出这个四边形ABCD是平行四边形的概率是 .
点睛:本题用到的知识点:概率=所求情况数与总情况数之比;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.
21、
【解析】
OC与AB相交于D,如图,利用作法得到OA=OB=AC=BC,则可判断四边形OACB为菱形,根据菱形的性质得到OC⊥AB,AD=BD=1,OD=CD,然后利用勾股定理计算出OD,从而得到OC的长.
【详解】
解:OC与AB相交于D,如图,
由作法得OA=OB=AC=BC,
∴四边形OACB为菱形,
∴OC⊥AB,AD=BD=1,OD=CD,
∵四边形OACB的周长为8cm,
∴OB=2,
在Rt△OBD中,OD=,
∴OC=2OD=2cm.
故答案为.
本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
22、40
【解析】
【分析】推出DE是三角形ABC的中位线,即可求AB.
【详解】因为,D、E是AC、BC的中点,
所以,DE是三角形ABC的中位线,
所以,AB=2DE=40米
故答案为:40
【点睛】本题考核知识点:三角形中位线.解题关键点:理解三角形中位线的性质.
23、75°
【解析】
【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.
【详解】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,
∴∠EBG=∠EGB,
∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,
又∵AD∥BC,
∴∠AGB=∠GBC,
∴∠AGB=∠BGH,
∵∠DGH=30°,
∴∠AGH=150°,
∴∠AGB=∠AGH=75°,
故答案为:75°.
【点睛】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
二、解答题(本大题共3个小题,共30分)
24、(1)14;(2)补图见解析;(3)1.
【解析】
(1)根据第1组频数及其频率求得总人数,总人数乘以第2组频率可得a的值;
(2)把上面的频数分布直方图补充完整;
(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.
【详解】
(1)∵被调查的总人数为6÷0.12=50人,
∴a=50×0.28=14,
故答案为:14;
(2)补全频数分布直方图如下:
(3)估计该校进入决赛的学生大约有1000×0.08=1人,
故答案为:1.
此题考查了用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.
25、(1)y=x+1;(2);(3)点C的坐标是(3,4)或(5,2)或(3,2).
【解析】
(1)把的坐标代入直线的解析式,即可求得的值,然后在解析式中,令,求得的值,即可求得的坐标;
(2)利用即可求出结果;
(3)分三种情况讨论,当、、分别为等腰直角三角形的直角顶点时,求出点的坐标分别为、、。
【详解】
(1)设直线AB的解析式是y=kx+b
把A(0,1),B(3,0)代入得:
解得:
∴直线AB的解析式是:
(2)过点A作AM⊥PD,垂足为M,则有AM=1,
∵x=1时,=,P在点D的上方,
∴PD=n﹣,
由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,
∴,
∴;
(3)当S△ABP=2时,,解得n=2,∴点P(1,2).
∵E(1,0), ∴PE=BE=2,
∴∠EPB=∠EBP=45°.
第1种情况,如图1,∠CPB=90°,BP=PC,
过点C作CN⊥直线x=1于点N.
∵∠CPB=90°,∠EPB=45°,
∴∠NPC=∠EPB=45°.
又∵∠CNP=∠PEB=90°,BP=PC,
∴△CNP≌△BEP,∴PN=NC=EB=PE=2,
∴NE=NP+PE=2+2=4, ∴C(3,4).
第2种情况,如图2, ∠PBC=90°,BP=BC,
过点C作CF⊥x轴于点F.
∵∠PBC=90°,∠EBP=45°,
∴∠CBF=∠PBE=45°.
又∵∠CFB=∠PEB=90°,BC=BP,
∴△CBF≌△PBE.
∴BF=CF=PE=EB=2,
∴OF=OB+BF=3+2=5, ∴C(5,2).
3种情况,如图3,∠PCB=90°,
∴∠CPB=∠EBP=45°,
∴△PCB≌△ BEP,
∴PC=CB=PE=EB=2,∴C(3,2).
∴以PB为边在第一象限作等腰直角三角形BPC,
综上所述点C的坐标是(3,4)或(5,2)或(3,2).
本题考核知识点:本题主要考查一次函数的应用和等腰三角形的性质. 解题关键点:掌握一次函数和等腰三角形性质,运用分类思想.
26、,.
【解析】
分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,最后将除法改成乘法进行约分化简,最后选择a的值时,不能取a=2和a=±1.
详解:原式=,
当a=1时,原式=.
点睛:本题主要考查的是分式的化简求值问题,属于基础题型.学会因式分解是解决分式问题的基本要求.
题号
一
二
三
四
五
总分
得分
批阅人
队员1
队员2
队员3
队员4
平均数(秒)
51
50
51
50
方差(秒2)
3.5
3.5
14.5
15.5
分组/分
频数
频率
50≤x<60
6
0.12
60≤x<70
0.28
70≤x<80
16
0.32
80≤x<90
10
0.20
90≤x≤100
4
0.08
相关试卷
这是一份2024-2025学年黑龙江省红光农场学校九年级数学第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省深圳外国语学校九年级数学第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份黑龙江省鸡西市虎林市八五八农场学校2023-2024学年数学九上期末达标检测模拟试题含答案,共7页。试卷主要包含了关于抛物线的说法中,正确的是,的值等于等内容,欢迎下载使用。