


2024-2025学年黑龙江省哈尔滨市第六十中学九上数学开学综合测试试题【含答案】
展开
这是一份2024-2025学年黑龙江省哈尔滨市第六十中学九上数学开学综合测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知三角形的周长是1.它的三条中位线围成的三角形的周长是( )
A.1B.12C.8D.4
2、(4分)已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点( )
A.(4,6)B.(﹣4,﹣3)C.(6,9)D.(﹣6,6)
3、(4分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点的坐标表示正确的是
A.(5,30)B.(8,10)C.(9,10)D.(10,10)
4、(4分)下列各点中,在函数 y=2x-5 图象上的点是( )
A.(0,0)B.(,-4)C.(3,-1)D.(-5,0)
5、(4分)如图,在△ABC中,点E,F分别是边BC上两点,ED垂直平分AB,FG垂直平分AC,连接AE,AF,若∠BAC=115°,则∠EAF的大小为( )
A.45°B.50°C.60°D.65°
6、(4分)如图,在平面直角坐标系中,矩形的边平行于坐标轴,对角线经过坐标原点,点在函数的图象上,若点的坐标是,则的值为( )
A.B.C.D.4
7、(4分)若代数式有意义,则实数x的取值范围是( )
A.x≠-3B.x>-3C.x≥-3D.任意实数
8、(4分)下列各组图形中不是位似图形的是()
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为_______.
10、(4分)如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB+PE的最小值是,则AB的长为______.
11、(4分)m,n分别是的整数部分和小数部分,则2m-n=______.
12、(4分)若解分式方程的解为负数,则的取值范围是____
13、(4分)一天,明明和强强相约到距他们村庄560米的博物馆游玩,他们同时从村庄出发去博物馆,明明到博物馆后因家中有事立即返回.如图是他们离村庄的距离y(米)与步行时间x(分钟)之间的函数图象,若他们出发后6分钟相遇,则相遇时强强的速度是_____米/分钟.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知 ,,求下列代数式的值:
(1)x2+y2;
(2).
15、(8分)解不等式组:,并把解集在数轴上表示出来.
16、(8分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG、FC
(1)请判断:FG与CE的数量关系是 ________,位置关系是________ 。
(2)如图2,若点E、F分别是边CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E、F分别是边BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断。
17、(10分)定义:如图(1),,,,四点分别在四边形的四条边上,若四边形为菱形,我们称菱形为四边形的内接菱形.
动手操作:
(1)如图2,网格中的每个小四边形都为正方形,每个小四边形的顶点叫做格点,由个小正方形组成一个大正方形,点、在格点上,请在图(2)中画出四边形的内接菱形;
特例探索:
(2)如图3,矩形,,点在线段上且,四边形是矩形的内接菱形,求的长度;
拓展应用:
(3)如图4,平行四边形,,,点在线段上且,
①请你在图4中画出平行四边形的内接菱形,点在边上;
②在①的条件下,当的长最短时,的长为__________
18、(10分)如图,在平面直角坐标系xOy中,点A( ,0),点B(0,1),直线EF与x轴垂直,A为垂足。
(1)若线段AB绕点A按顺时针方向旋转到AB′的位置,并使得AB与AB′关于直线EF对称,请你画出线段AB所扫过的区域(用阴影表示);
(2)计算(1)中线段AB所扫过区域的面积。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中,正比例函数与反比例函数的图象交于点,则_________.
20、(4分)如图,中,,,,则__________.
21、(4分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF,CF,则下列结论中一定成立的是______.(把所有正确结论的序号都填在横线上)
(1)∠DFC+∠FEC=90°;(2)∠B=∠AEF;(3)CF=EF;(4)
22、(4分)如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了_________cm.
23、(4分)若a、b,c为三角形的三边,则________。
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在▱ABCD中,延长AB到点E.使BE=AB,连接DE交BC于点F.
求证:△BEF≌△CDF.
25、(10分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).
(1)求y与x之间的函数表达式;
(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.
26、(12分)计算
(1)
(2).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.
【详解】
解:∵三角形的周长是1,
∴它的三条中位线围成的三角形的周长是:1×=2.
故选:C.
此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.
2、B
【解析】
试题分析:根据“两点法”确定一次函数解析式,再检验直线解析式是否满足各点的横纵坐标.
解:设经过两点(0,3)和(﹣2,0)的直线解析式为y=kx+b,
则,解得,∴y=x+3;
A、当x=4时,y=×4+3=9≠6,点不在直线上;
B、当x=﹣4时,y=×(﹣4)+3=﹣3,点在直线上;
C、当x=6时,y=×6+3=12≠9,点不在直线上;
D、当x=﹣6时,y=×(﹣6)+3=﹣6≠6,点不在直线上;
故选B.
3、C
【解析】
先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.
【详解】
如图,
过点C作CD⊥y轴于D,
∴BD=5,CD=50÷2-16=9,
OA=OD-AD=40-30=10,
∴P(9,10);
故选C.
此题考查了坐标确定位置,根据题意确定出DC=9,AO=10是解本题的关键.
4、B
【解析】
只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.
【详解】
解:A、把(0,0)代入y=2x-5得:左边=0,右边=2×(0-1)-5=-5,左边≠右边,故A选项错误;
B、把(,-4)代入y=2x-5得:左边=-4,右边=2×-5=-4,左边=右边,故B选项正确;
C、把(3,-1)代入y=2x-5得:左边=-1,右边=2×3-5=1,左边≠右边,故C选项错误;
D、把(-5,0)代入y=2x-5得:左边=0,右边=2×(-5)-5=-15,左边≠右边,故D选项错误.
故选:B.
本题主要考查对一次函数图象上点的坐标特征的理解和掌握,能根据点的坐标判断是否在函数的图象上是解此题的关键.
5、B
【解析】
根据三角形内角和定理得到,根据线段垂直平分线的性质得到,,根据等腰三角形的性质得到,,结合图形计算即可.
【详解】
解:,
,
垂直平分,垂直平分,
,,
,,
,
,
故选:.
本题考查的是线段的垂直平分线的性质、等腰三角形的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
6、B
【解析】
先利用矩形的性质得到矩形AEOM的面积等于矩形OFCN的面积,则根据反比例函数图象上点的坐标特征得到k的值.
【详解】
解:连接BD,设A(x,y),
如图,∵矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,
∴矩形AEOM的面积等于矩形ONCF的面积,
∴xy=k=3×(−2),即k=−6,
故选:B.
本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了矩形的性质.
7、C
【解析】
根据二次根式有意义的条件即可求出答案.
【详解】
∵代数式有意义
∴x+3≥0
∴x≥-3.
故选C.
本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件.
8、D
【解析】
根据位似图形的定义解答即可,注意排除法在解选择题中的应用.
【详解】
根据位似图形的定义,可得A,B,C是位似图形,B与C的位似中心是交点,A的位似中心是圆心;D不是位似图形.
故选D.
本题考查了位似图形的定义.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据勾股定理的几何意义:得到S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,求解即可.
【详解】
由题意:S正方形A+S正方形B=S正方形E,S正方形D﹣S正方形C=S正方形E,∴S正方形A+S正方形B=S正方形D﹣S正方形C.
∵正方形B,C,D的面积依次为4,3,9,∴S正方形A+4=9﹣3,∴S正方形A=1.
故答案为1.
本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.
10、1
【解析】
分析:找出B点关于AC的对称点D,连接DE,则DE就是PE+PB的最小值,进而可求出AB的值.
详解:连接DE交AC于P,连接BD,BP,
由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,
∴PE+PB=PE+PD=DE,
即DE就是PE+PB的最小值,
∵∠BAD=60°,AD=AB,
∴△ABD是等边三角形,
∵AE=BE,
∴DE⊥AB(等腰三角形三线合一的性质)
在Rt△ADE中,DE=,
∴AD1=4,
∴AD=AB=1.
点睛:本题主要考查轴对称-最短路线问题和菱形的性质的知识点,解答本题的关键,此题是道比较不错的习题.
11、
【解析】
先估算出的大致范围,然后可求得-1的整数部分和小数部分,从而可得到m、n的值,最后代入计算即可.
【详解】
解:∵1<2<4,
∴1<<2,
∴0<-1<1.
∴m=0,n=-1.
∴2m-n=0-(-1)=1-.
故答案为:
本题主要考查的是估算无理数的大小,求得的大致范围是解题的关键.
12、
【解析】
试题解析:去分母得,,
即
分式方程的解为负数,
且
解得:且
故答案为:且
13、80
【解析】
根据图形找出点A、B的坐标利用待定系数法求出线段AB的函数解析式,代入x=6求出点F的坐标,由此即可得出直线OF的解析式.
【详解】
.解:观察图形可得出:点A的坐标为(5,560),点B的坐标为(12,0),
设线段AB的解析式为y=kx+b(k≠0),
∴ ,解得:,
∴线段AB的解析式为y=﹣80x+960(5≤x≤12).
当x=6时,y=480,
∴点F的坐标为(6,480),
∴直线OF的解析式为y=80x.
所以相遇时强强的速度是80米/分钟.
故答案为80
本题考查了一次函数的应用以及待定系数法求出函数解析式,观察图形找出点的坐标再利用待定系数法求出函数解析式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1) 8;(2) 4.
【解析】
将 x2+y2变形为(x+y)2-2xy,再将x+y与xy的值代入即可;
将整理为,再将x2+y2与xy的值代入即可.
【详解】
(1)∵x=+1,y=-1,
∴x+y=2,xy=2,
∴x2+y2
=(x+y)2-2xy
=(2)2-2×2
=12-4
=8.
(2)∵x=+1,y=-1,
∴x2+y2=8,xy=2,
∴+
=
=
=4.
本题考查了分式的化简求值,以及二次根式的化简求值,熟练掌握运算法则是解题的关键.
15、﹣1<x≤3
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
,解不等式①,得x>﹣1,解不等式②,得x≤3,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示为:
.
本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解答本题的关键.
16、(1)FG=CE,FG∥CE;(2)详见解析;(3)成立,理由详见解析.
【解析】
(1)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
(3)证明△CBF≌△DCE,即可证明四边形CEGF是平行四边形,即可得出结论.
【详解】
(1)FG=CE,FG∥CE;理由如下:
过点G作GH⊥CB的延长线于点H,如图1所示:
则GH∥BF,∠GHE=90°,
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,
,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,
∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE,
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,
∴BH=EC,
∴FG=EC;
(2)FG=CE,FG∥CE仍然成立;理由如下:
过点G作GH⊥CB的延长线于点H,如图2所示:
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,
,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE,
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,
∴BH=EC,
∴FG=EC;
(3)FG=CE,FG∥CE仍然成立.理由如下:
∵四边形ABCD是正方形,
∴BC=CD,∠FBC=∠ECD=90°,
在△CBF与△DCE中,
,
∴△CBF≌△DCE(SAS),
∴∠BCF=∠CDE,CF=DE,
∵EG=DE,∴CF=EG,
∵DE⊥EG
∴∠DEC+∠CEG=90°
∵∠CDE+∠DEC=90°
∴∠CDE=∠CEG,
∴∠BCF=∠CEG,
∴CF∥EG,
∴四边形CEGF平行四边形,
∴FG∥CE,FG=CE.
四边形综合题,考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质等知识.本题综合性强,有一定难度,解题的关键是利用全等三角形的对应边相等进行线段的等量代换,从而求证出平行四边形.
17、(1)详见解析;(2)3;(3)①详见解析;②的长为
【解析】
(1)以EF为边,作一个菱形,使其各边长都为 ;
(2)如图2,连接HF,证明△DHG≌△BFE(AAS),可得CG=3;
(3)①根据(2)中可知DG=BE=2,根据对角线垂直平分作内接菱形EFGH;
②如图5,当F与C重合,则A与H重合时,此时BF的长最小,就是BC的长,根据直角三角形30度角的性质和勾股定理计算可得结论.
【详解】
(1)如图2所示,菱形即为所求;
(2)如图3,连接,
四边形是矩形,,,,,
四边形是菱形,,,,,即,
,;
(3)①如图4所示,由(2)知:,,
作法:作,连接,再作的垂直平分线,交、于、,得四边形即为所求作的内接菱形;
②如图5,当与重合,则与重合时,此时的长最小,过作于,中,,,,,
四边形是菱形,,
,
即当的长最短时,的长为
本题是四边形的综合题,主要考查新定义−四边形ABCD的内接菱形,基本作图−线段的垂直平分线,菱形,熟练掌握基本作图及平行四边形、菱形和矩形的性质是解题的关键.
18、(1)见解析;(2).
【解析】
(1)将线段AB绕点A按顺时针方向旋转到AB′的位置,使B′的坐标为(2,1);
(2)利用扇形面积公式求出线段AB所扫过区域的面积即可.
【详解】
(1)如图所示;
(2)∵点A(,0),点B(0,1),
∴BO=1,AO=,
∴AB= =2,
∴tan∠BAO=,
∴∠BAO=30°,
∵线段AB绕点A按顺时针方向旋转到AB′的位置,
∴∠1=30°,
∴∠BAB′=180°−30°−30°=120°,
阴影部分的面积为: .
此题考查作图-旋转变换,扇形面积的计算,解题关键在于掌握作图法则
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
把代入可得:解得得,再把代入,即,解得.
【详解】
解:把代入可得:
解得,
∴
∵点也在图象上,
把代入,
即,
解得.
故答案为:8
本题考查了一次函数和反比例函数,掌握待定系数法求解析式是关键.
20、
【解析】
利用平行四边形的对角线互相平分得出AO=AC=1,BD=2BO,根据勾股定理求出BO的长,进而可求出BD的长.
【详解】
解:∵▱ABCD的对角线AC与BD相交于点O,AB=AC=2,
∴AO=CO= AC=1,BD=2BO.
∵AB⊥AC,
∴BD=2BO=,
故答案为:.
本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.
21、 (1)(3)
【解析】
分别利用平行四边形的性质以及全等三角形的判定得出△AEF≌△DMF,得出角、线段之间关系,得出(1)(3)成立,(2)不成立;再由梯形面积和平行四边形面积关系进而得出(4)不成立.
【详解】
解:∵F是AD的中点,
∴AF=FD,
∵在▱ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
延长EF,交CD延长线于M,如图所示:
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,
∴AF=FD,
在△AEF和△DFM中,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵∠B=∠ADC>∠M,
∴∠B>∠AEF,(2)不成立;
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴CF=EF,(3)成立;
∴∠FEC=∠FCE,
∵∠DCF+∠FEC=90°,
∴∠DFC+∠FEC=90°,(1)成立;
∵四边形ADCE的面积=(AE+CD)×CE,F是AD的中点,
∴S△EFC=S四边形ADCE,
∵S△BDC=S平行四边形ABCD=CD×CE,
∴S△EFC≠S△BDC,(4)不成立;
故答案为:(1)(3).
此题主要考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,证出△AEF≌△DMF是解题关键.
22、1
【解析】
根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.
【详解】
Rt△ACD中,AC=AB=4cm,CD=3cm;
根据勾股定理,得:AD==5(cm);
∴AD+BD-AB=1AD-AB=10-8=1cm;
故橡皮筋被拉长了1cm.
故答案是:1.
此题主要考查了等腰三角形的性质以及勾股定理的应用,解题的关键是理解题意,灵活运用所学知识解决问题.
23、2a
【解析】
根据三角形三条边的长度关系,可以得到两个括号内的正负情况;再根据一个数先平方,后开方,所得的结果是这个数的绝对值,来计算这个式子.
【详解】
∵a,b,c是三角形的三边,
三角形任意两边之和大于第三边,任意两条边之差小于第三边,
∴a+b-c>0,b-c-a<0,
所以==.
本题主要考查了三角形三边的边长关系:三角形任意两条边之和大于第三边,任意两条边之差小于第三边.解决本题,还需要清楚地明白一个数先平方后开方,所得的就是这个数的绝对值.
二、解答题(本大题共3个小题,共30分)
24、可证明∠CDF=∠B,BE=CD,∠C=∠FBE∴△BEF≌△CDF(ASA)
【解析】
试题分析:根据平行四边形的对边平行且相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠C=∠FBE,然后利用“角角边”证明即可.
在▱ABCD中,AB=CD,AB∥CD,
∴∠C=∠FBE,
∵BE=AB,
∴BE=CD,
在△BEF和△CDF中,
,
∴△BEF≌△CDF(AAS).
考点:平行四边形的性质;全等三角形的判定.
25、(1);(2)工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润.
【解析】
(1)利润y(元)=生产甲产品的利润+生产乙产品的利润;而生产甲产品的利润=生产1吨甲产品的利润0.3万元×甲产品的吨数x,即0.3x万元,生产乙产品的利润=生产1吨乙产品的利润0.4万元×乙产品的吨数(2500﹣x),即0.4(2500﹣x)万元.
(2)由(1)得y是x的一次函数,根据函数的增减性,结合自变量x的取值范围再确定当x取何值时,利润y最大.
【详解】
(1).
(2)由题意得:,解得.
又因为,所以.
由(1)可知,,所以的值随着的增加而减小.
所以当时,取最大值,此时生产乙种产品(吨).
答:工厂生产甲产品1000吨,乙产品1500吨,时,能获得最大利润.
这是一道一次函数和不等式组综合应用题,准确地根据题目中数量之间的关系,求利润y与甲产品生产的吨数x的函数表达式,然后再利用一次函数的增减性和自变量的取值范围,最后确定函数的最值.也是常考内容之一.
26、4+;6+
【解析】
(1)先根据二次根式的乘除法则运算,然后合并即可;
(2)先把各二次根式化为最简二次根式,然后合并即可.
【详解】
解:(1)原式=﹣+2=4﹣+2=4+;
(2)原式=5﹣+﹣1=4+.
考点:二次根式的混合运算
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024-2025学年黑龙江省哈尔滨市香坊区第六十九中学数学九年级第一学期开学联考试题【含答案】,共19页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
这是一份2024-2025学年黑龙江省哈尔滨市平房区数学九上开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年黑龙江省哈尔滨市阿城区九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。