![2024-2025学年黑龙江省克东县数学九上开学统考试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16178183/0-1726872603859/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年黑龙江省克东县数学九上开学统考试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16178183/0-1726872603921/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年黑龙江省克东县数学九上开学统考试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16178183/0-1726872603955/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年黑龙江省克东县数学九上开学统考试题【含答案】
展开
这是一份2024-2025学年黑龙江省克东县数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)要使分式有意义,则x的取值范围是( )
A.B.C.D.
2、(4分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若∠B=50°,则∠AFE的度数为( )
A.50°B.60°C.65°D.70°
3、(4分)下列式子中,属于最简二次根式的是
A.B.C.D.
4、(4分)实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )
A.4,5B.5,4C.4,4D.5,5
5、(4分)随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前的.设这种电子产品的价格在这两年中平均每年下降x,则根据题意可列出方程( )
A.1﹣2xB.2(1﹣x)C.(1﹣x)2D.x(1﹣x)
6、(4分)下列各点中,在反比例函数图象上的点是
A.B.C.D.
7、(4分)下列四种标志图案中,既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
8、(4分)若式子有意义,则实数的取值范围是( )
A.且B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性_________摸出红球可能性.(填“等于”、“小于”或“大于”)
10、(4分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的_____(从“众数、方差、平均数、中位数”中填答案)
11、(4分)方程x5=81的解是_____.
12、(4分)如图是一张三角形纸片,其中,从纸片上裁出一矩形,要求裁出的矩形的四个顶点都在三角形的边上,其面积为,则该矩形周长的最小值=________
13、(4分)一个多边形的内角和与外角和的比是4:1,则它的边数是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)某校计划厂家购买A、B两种型号的电脑,已知每台A种型号电脑比每台B种型号电脑多01.万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同;
(1)求A、B两种型号电脑单价各为多少万元?
(2)学校预计用不多于9.2万元的资金购进20台电脑,其中A种型号电脑至少要购进10台,请问有哪几种购买方案?
15、(8分)如图,正方形中,点、、分别是、、的中点,、交于,连接、.下列结论:①;②;③;④.正确的有( )
A.1个B.2个C.3个D.4个
16、(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.
17、(10分)如图,在平面直角坐标系中,一次函数y=kx+ b的图象分别与x轴和y轴交于点A、B(0,-2),与正比例函数y=x的图象交于点C(m,2).
(1)求m的值和一次函数的解析式;
(2)求△AOC的面积;
(3)直接写出使函数y =kx +b的值大于函数y=x的值的自变量x的取值范围.
18、(10分)如图,在直角坐标系内,点A(0,5),B(-4,0),C(1,0).请在图中画出把△ABC向右平移两个单位,得到的△DEF,并直接写出点D,E,F的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在□ABCD中,O是对角线的交点,那么____.
20、(4分)若是整数,则最小的正整数n的值是_____________。
21、(4分)如图,把矩形ABCD沿EF翻转,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是
22、(4分)已知菱形的两条对角线长分别为1和4,则菱形的面积为______.
23、(4分)若代数式在实数内范围有意义,则 x 的取值范围是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)我们都知道在中国象棋中,马走日,象走田,如图所示,假设一匹马经过A、B两点走到点C,请问点A 、B在不在马的起始位置所在的点与点C所确定的直线上?请说明你的理由.
25、(10分)如图,在平面直角坐标系中,菱形的顶点在反比例函数图象上,直线交于点,交正半轴于点,且
求的长:
若,求的值.
26、(12分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据分式分母不为0的条件进行求解即可.
【详解】
由题意得
x-1≠0,
解得:x≠1,
故选A.
2、C
【解析】
由菱形的性质和等腰三角形的性质可得∠BCA=∠BAC=65°,由三角形中位线定理可得EF∥BC,即可求解.
【详解】
解:∵四边形ABCD是菱形
∴AB=BC,且∠B=50°
∴∠BCA=∠BAC=65°
∵E,F分别是AB,AC的中点,
∴EF∥BC
∴∠AFE=∠BCA=65°
故选:C.
本题考查了菱形的性质,等腰三角形的性质,以及三角形中位线的判定与性质,熟练掌握菱形的性质是本题的关键.
3、B
【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件 (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.
∵,∴属于最简二次根式.故选B.
4、A
【解析】
根据众数及中位数的定义,结合所给数据即可作出判断.
【详解】
解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4
故选:A.
本题考查(1)、众数;(2)、中位数.
5、C
【解析】
设这种电子产品的价格在这两年中平均每年下降x,该电子产品两年前的价格为a元,根据该电子产品两年前的价格及今年的价格,即可得出关于x的一元二次方程,此题得解.
【详解】
设这种电子产品的价格在这两年中平均每年下降x,该电子产品两年前的价格为a元,根据题意得:
a(1﹣x)2a,
即(1﹣x)2,
故选C.
本题考查了一元二次方程的应用,弄清题意,找准等量关系,正确列出一元二次方程是解题的关键.
6、B
【解析】
把各点的坐标代入解析式,若成立,就在函数图象上.即满足xy=2.
【详解】
只有选项B:-1×(-2)=2,所以,其他选项都不符合条件.
故选B
本题考核知识点:反比例函数的意义. 解题关键点:理解反比例函数的意义.
7、B
【解析】
根据轴对称图形和中心对称图形的意义逐个分析即可.
【详解】
解:A、不是轴对称图形,是中心对称图形;
B、是轴对称图形,是中心对称图形;
C、不是轴对称图形,是中心对称图形;
D、不是轴对称图形,不是中心对称图形.
故选B.
考核知识点:理解轴对称图形和中心对称图形的定义.
8、A
【解析】
根据分式及二次根式的性质即可求解.
【详解】
依题意得x≥0,x-2≠0,故且
选A.
此题主要考查分式有意义的条件,解题的关键是熟知二次根式的性质及分母不为零.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、大于
【解析】
分别求出摸到白球与摸到红球的概率,比较这两个概率即可得答案.
【详解】
∵共有球:2+3+5=10个,
∴P白球==,P红球==,
∵>,
∴摸出白球可能性大于摸出红球可能性.
故答案为:大于
本题考查概率的求法,概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键.
10、中位数
【解析】
9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
故答案为:中位数.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
11、1
【解析】
方程两边同时乘以1,可得x5=241=15.即可得出结论.
【详解】
∵ x5=81,
∴x5=81×1=241=15,
∴x=1,
故答案为:1.
本题考查了高次方程的解法,能够把241写成15是解题的关键.
12、
【解析】
分两种情况讨论,(1)当矩形的其中一边在上时,设,则,根据矩形的面积列出方程并求解,然后求得矩形的周长;(2)当矩形的其中一边在上时,设,则,根据矩形的面积列出方程并求解,然后求得矩形的周长;两个周长进行比较可得结果.
【详解】
(1)当矩形的其中一边在上时,如图所示:
设,则
∵
∴
∴
整理得:解得
当时
当时
∵
∴矩形的周长最小值为
(2)当矩形的其中一边在上时,如图所示:
设,则
∵
∴
∴
整理得:解得
所以和(1)的结果一致
综上所述:矩形周长的最小值为
本题考查了矩形的面积和一元二次方程,利用数形结合是常用的解题方法.
13、1.
【解析】
多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【详解】
解:根据题意,得
(n﹣2)•180=4360,
解得:n=1.
则此多边形的边数是1.
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、(1)A、B两种型号电脑单价分别为0.5万元和0.4万元;(2)有三种方案:购买A种型号电脑10台,B种型号电脑10台;购买A种型号电脑11台,B种型号电脑9台;购买A种型号电脑12台,B种型号电脑8台.
【解析】
(1)A种型号的电脑每台价格为x万元,则B种型号的电脑每台价格为(x+0.1)万元,根据题意可列出分式方程进行求解;
(2)设购买A种型号电脑y台,则购买B种型号电脑(20-y)台,根据题意可列出不等式组即可求解.
【详解】
(1)A种型号的电脑每台价格为x万元,则B种型号的电脑每台价格为(x-0.1)万元,根据题意得,
解得x=0.5,
经检验,x=0.5是原方程的解,x-0.1=0.4,
故A、B两种型号电脑单价分别为0.5万元和0.4万元.
(2)设购买A种型号电脑y台,则购买B种型号电脑(20-y)台,
根据题意得,解得y≤12,
又A种型号电脑至少要购进10台,
∴10≤y≤12,
故有三种方案:
购买A种型号电脑10台,B种型号电脑10台;
购买A种型号电脑11台,B种型号电脑9台;
购买A种型号电脑12台,B种型号电脑8台;
此题主要考查分式方程、不等式的应用,解题的关键是根据题意找到等量关系、不等式关系进行列式求解.
15、C
【解析】
连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,AG≠DG,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=AD,根据等腰三角形的性质,即可得∠CHG=∠DAG.则问题得解.
【详解】
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=90°,
∵点E、F、H分别是AB、BC、CD的中点,
∴BE=CF,
在△BCE与△CDF中,
,
∴△BCE≌△CDF,(SAS),
∴∠ECB=∠CDF,
∵∠BCE+∠ECD=90°,
∴∠ECD+∠CDF=90°,
∴∠CGD=90°,
∴CE⊥DF;故①正确;
在Rt△CGD中,H是CD边的中点,
∴HG=CD=AD,
即2HG=AD;故④正确;
连接AH,如图所示:
同理可得:AH⊥DF,
∵HG=HD=CD,
∴DK=GK,
∴AH垂直平分DG,
∴AG=AD;
若AG=DG,则△ADG是等边三角形,
则∠ADG=60°,∠CDF=30°,
而CF=CD≠DF,
∴∠CDF≠30°,
∴∠ADG≠60°,
∴AG≠DG,故②错误;
∴∠DAG=2∠DAH,
同理:△ADH≌△DCF,
∴∠DAH=∠CDF,
∵GH=DH,
∴∠HDG=∠HGD,
∴∠GHC=∠HDG+∠HGD=2∠CDF,
∴∠CHG=∠DAG;故③正确;
正确的结论有3个,
故选C.
此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.
16、m=﹣1.
【解析】
利用待定系数法即可解决问题;
【详解】
解:设一次函数的解析式为y=kx+b,
则有,
解得,
∴一次函数的解析式为y=2x﹣3,
当x=﹣1时,m=﹣1.
本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.
17、 (1)m=1;y =1x﹣1;(1)S△AOC=1;(3)x>1.
【解析】
(1)把C(m,1)代入y=x得m=1,可得C的坐标,且已知B点的坐标,即可求得一次函数解析式为y = 1x﹣1.
(1) 把y=0代入y=1x﹣1得x=1,则可得A点坐标,即可求得△AOC的面积.
(3) 根据一次函数图形,可知y =kx +b的值大于函数y=x的值,即为自变量x的取值范围是x>1.
【详解】
解:(1)把C(m,1)代入y=x得m=1,
则点C的坐标为(1,1),
把C(1,1),B(0, -1)代入y = kx + b得
解得
所以一次函数解析式为y = 1x﹣1;
(1)把y=0代入y=1x﹣1得x=1,则A点坐标为(1,0),
所以S△AOC=×1×1=1;
(3)根据一次函数图形,可知y =kx +b的值大于函数y=x的值,即为自变量x的取值范围是x>1.
此题考查一次函数,解题关键在于利用待定系数法求一次函数解析式.
18、D(2,5),E(-2,0),F(3,0)
【解析】
首先确定A、B、C三点向右平移3个单位后对应点位置,然后再连接即可.
【详解】
解:如图所示:△DEF是△ABC向右平移两个单位所得,
∴点D,E,F的坐标分别为:D(2,5),E(-2,0),F(3,0).
此题主要考查了作图--平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由向量的平行四边形法则及相等向量的概念可得答案.
【详解】
解:因为:□ABCD,
所以,,
所以:.
故答案为:.
本题考查向量的平行四边形法则,掌握向量的平行四边形法则是解题的关键.
20、1
【解析】
是整数则1n一定是一个完全平方数,把1分解因数即可确定.
【详解】
解:∵1=1×1,
∴n的最小值是1.
故答案为:1.
本题考查了二次根式的定义:一般地,我们把形如a(a≥0)的式子叫做二次根式.也考查了=|a|.
21、.
【解析】
试题分析:
【分析】如图,连接BE,
∵在矩形ABCD中,AD∥BC,∠EFB=60°,
∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.
∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.
∴∠AEB=∠AEF-∠BEF=120°-60°="60°." ∴∠ABE=30°.
∴在Rt△ABE中,AB= 2.
∵AE=2,DE=6,∴AD=AE+DE=2+6=8.
∴矩形ABCD的面积=AB•AD=2×8=16.
故选D.
考点:1.翻折变换(折叠问题);2.矩形的性质;3.平行的性质;4.含30度直角三角形的性质.
22、1
【解析】
利用菱形的面积等于对角线乘积的一半求解.
【详解】
解:菱形的面积=×1×4=1.
故答案为1.
本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=ab(a、b是两条对角线的长度).
23、x>1
【解析】
根据分式及二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
【详解】
∵代数式在实数范围内有意义,
∴.
故答案为:x>1.
本题考查二次根式及分式有意义的条件,掌握二次根式及分式有意义的条件是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、在,理由见解析.
【解析】
以B为原点,建立直角坐标系,求出直线BC的解析式,再讲A点坐标代入解析式就可以得出结论.
【详解】
点A、B、C在一条直线上.
如图,以B为原点,建立直角坐标系,
A(-1,-1),C(1,1).
设直线BC 的解析式为:y=kx,由题意,得
1=k,
∴y=1x.
∵x=-1时,
∴y=-1.
∴A(-1,-1)在直线BC上,
∴点A、B、C在一条直线上.
本题考查了平面直角坐标系的运用,待定系数法求一次函数的解析式的运用,由自变量的值确定函数值的运用,解答时建立平面直角坐标系求出函数的解析式是关键.
25、(1)6;(2)4
【解析】
(1)首先利用勾股定理求出EF的长,然后结合题意利用菱形的性质证明出△DOE为等腰三角形,由此求出DO,最后进一步求解即可;
(2)过点A作AN⊥OE,垂足为E,在Rt△AON中,利用勾股定理求出AN的长,然后进一步根据反比例函数的性质求出值即可.
【详解】
(1)∵,
∴EF=,∠OEF=∠OFE=45°,
∵四边形OABC为菱形,
∴OA=AB=BC=OC,OB⊥AC,DO=DB,
∴△DOE为等腰三角形,
∴DO=DE=EF=3,
∴OB=2DO=6;
(2)
如图,过点A作AN⊥OE,垂足为E,则△ANE为等腰直角三角形,
∴AN=NE,
设AN=,则NE=,ON=,
在Rt△AON中,由勾股定理可得:,
解得:,,
当时,A点坐标为:(,),C点坐标为:(,);
当时,C点坐标为:(,),A点坐标为:(,);
∴.
本题主要考查了菱形的性质和等腰三角形性质与判定及勾股定理和反比例函数性质的综合运用,熟练掌握相关概念是解题关键.
26、证明见解析.
【解析】
分析:因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,故OB=OC.
【解答】证明:在Rt△ABC和Rt△DCB中
,
∴Rt△ABC≌Rt△DCB(HL),
∴∠OBC=∠OCB,
∴BO=CO.
点睛:此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
题号
一
二
三
四
五
总分
得分
批阅人
x
…
﹣1
1
2
…
y
…
m
﹣1
1
…
相关试卷
这是一份2024-2025学年黑龙江省讷河市实验学校数学九上开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年黑龙江省哈尔滨道外区四校联考数学九上开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年海南省洋浦中学九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。