开学活动
搜索
    上传资料 赚现金

    2024-2025学年黑龙江省铁力市第四中学九年级数学第一学期开学监测试题【含答案】

    2024-2025学年黑龙江省铁力市第四中学九年级数学第一学期开学监测试题【含答案】第1页
    2024-2025学年黑龙江省铁力市第四中学九年级数学第一学期开学监测试题【含答案】第2页
    2024-2025学年黑龙江省铁力市第四中学九年级数学第一学期开学监测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年黑龙江省铁力市第四中学九年级数学第一学期开学监测试题【含答案】

    展开

    这是一份2024-2025学年黑龙江省铁力市第四中学九年级数学第一学期开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)不等式x+1≥2x﹣1的解集在数轴上表示为( )
    A.B.C.D.
    2、(4分)下列方程是关于x的一元二次方程的是
    A.B.
    C.D.
    3、(4分)如图,是某超市一楼与二楼之间的阶梯式电梯示意图,其中、分别表示一楼、二楼地面的水平线,,的长为, 则乘电梯从点到点上升的高度是( )
    A.B.C.D.
    4、(4分)当x=2时,函数y=-x2+1的值是( )
    A.-2B.-1C.2D.3
    5、(4分)下列四组线段中,可以构成直角三角形的是( )
    A.4,5,6B.2,3,4C.3,4,5D.1,,
    6、(4分)鞋店老板去进货时,他必须了解近期各种尺码的鞋销售情况,他应该最关心统计量中的( )
    A.众数 B.中位数 C.平均数 D.方差
    7、(4分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=1.则图中阴影部分的面积为( )
    A.10B.12C.16D.11
    8、(4分)如图所示的数字图形中是中心对称图形的有( )
    A.1个B.2个C.3个D.4个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)定义一种运算法则“”如下:,例如:,若,则的取值范围是____________.
    10、(4分)如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.
    11、(4分)在直角三角形中,若勾为1,股为1.则弦为________.
    12、(4分)在函数中,自变量x的取值范围是__________________.
    13、(4分)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是___.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,
    (1)求证:四边形AEBD是矩形;
    (2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
    15、(8分)学生小明、小华为了解本校八年级学生每周上网的时间,各自进行了抽样调查.小明调查了八年级信息技术兴趣小组中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5h;小华从全体320名八年级学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2h.小明与小华整理各自样本数据,如表所示.
    (每组可含最低值,不含最高值)
    请根据上述信息,回答下列问题:
    (1)你认为哪位学生抽取的样本具有代表性? _____.估计该校全体八年级学生平均每周上网时间为_____h;
    (2)在具有代表性的样本中,中位数所在的时间段是_____h/周;
    (3)专家建议每周上网2h以上(含2h)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体八年级学生中有多少名学生应适当减少上网的时间?
    16、(8分)如图所示,平行四边形中,和的平分线交于边上一点 ,
    (1)求的度数.
    (2)若,则平行四边形的周长是多少?
    17、(10分)按要求解不等式(组)
    (1)求不等式的非负整数解.
    (2)解不等式组,并把它的解集在数轴上表示出来.
    18、(10分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G.F为AB边上一点,连接CF,且∠ACF=∠CBG.
    (1)求证:BG=CF;
    (2)求证:CF=2DE;
    (3)若DE=1,求AD的长
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.
    20、(4分)如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为__.
    21、(4分)函数是y关于x的正比例函数,则______.
    22、(4分)若是方程的一个根,则的值为____________.
    23、(4分)在x2+(________)+4=0的括号中添加一个关于的一次项,使方程有两个相等的实数根.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)求不等式组的解集,并把解集在数轴上表示出来.
    25、(10分)如图,在四边形ABCD中,AB=AD=,∠A=90º,∠CBD=30º,∠C=45º,求BD及CD的长.
    26、(12分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
    (1)求一次函数y=kx+b的解析式;
    (2)若点D在y轴负半轴上,且满足S△COD═S△BOC,请直接写出点D的坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    先求出不等式的解集,再根据不等式解集的表示方法,可得答案.
    【详解】
    移项,
    得:x﹣2x≥﹣1﹣1,
    合并同类项,
    得:﹣x≥﹣2,
    系数化为1,
    得:x≤2,
    将不等式的解集表示在数轴上如下:

    故选B.
    本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
    2、D
    【解析】
    根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是1;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.
    【详解】
    A.ax1+bx+c=0,当a=0时,不是一元二次方程,故A错误;
    B.+=1,不是整式方程,故B错误;
    C.x1+1x=x1﹣1,是一元一次方程,故C错误;
    D.3(x+1)1=1(x+1),是一元二次方程,故D正确.
    故选D.
    本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.
    3、C
    【解析】
    过C作CM⊥AB于M,求出∠CBM=30°,根据BC=10m,利用三角函数的知识解直角三角形即可.
    【详解】
    解:过C作CM⊥AB于M,
    ∵∠ABC=150°,
    ∴∠CBM=180°-150°=30°,
    在Rt△CBM中,
    ∵BC=10m,∠CBM=30°,
    ∴=sin∠CBM=sin30°=,
    ∴CM=BC=5m,
    即从点B到点C上升的高度h是5m.
    故选C.
    本题考查了解直角三角形的应用,解答本题的关键是根据坡角建立直角三角形,利用三角函数解直角三角形.
    4、B
    【解析】
    把x=2代入函数关系式进行计算即可得解.
    【详解】
    x=2时,y=−×22+1=−1.
    故选:B.
    本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.
    5、C
    【解析】
    由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    A. 4+5≠6,不能构成直角三角形,故不符合题意;
    B. 2+3≠4,不能构成直角三角形,故不符合题意;
    C. 3+4=5,能构成直角三角形,故符合题意;
    D. 1+()≠(),不能构成直角三角形,故不符合题意。
    故选C.
    此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算
    6、A
    【解析】
    众数能帮助鞋店老板了解进货时应该进哪种尺码的鞋最多;如果我是鞋店老板,我会对众数感兴趣,因为这种尺码的鞋子需求量最大,销售量最多,据此即可找到答案.
    【详解】
    解:根据题干分析可得:众数能帮助鞋店老板了解进货时应该进哪种尺码的鞋最多,因为这种尺码的鞋子需求量最大,销售量最多.
    故选A.
    此题主要考查了中位数、众数、平均数、方差的意义;也考查了学生分析判断和预测的能力.
    7、C
    【解析】
    首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.
    【详解】
    作PM⊥AD于M,交BC于N.
    则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
    ∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN
    ∴S矩形EBNP= S矩形MPFD ,
    又∵S△PBE= S矩形EBNP,S△PFD=S矩形MPFD,
    ∴S△DFP=S△PBE=×2×1=1,
    ∴S阴=1+1=16,
    故选C.
    本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.
    8、C
    【解析】
    根据中心对称图形的概念解答即可.
    【详解】
    A.是中心对称图形,
    B.是中心对称图形,
    C.是中心对称图形,
    D.不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与它本身重合.
    综上所述:是中心对称图形的有3个,
    故选C.
    本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.熟练掌握中心对称图形的定义是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据新定义列出不等式即可求解.
    【详解】
    依题意得-3x+5≤11
    解得
    故答案为:.
    此题主要考查列不等式,解题的关键是根据题意列出不等式进行求解.
    10、7.2
    【解析】
    试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.
    解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,
    ∴BC2=AB2+AC2,
    ∴∠A=90°,
    ∵MD⊥AB,ME⊥AC,
    ∴∠A=∠ADM=∠AEM=90°,
    ∴四边形ADME是矩形,
    ∴DE=AM,
    当AM⊥BC时,AM的长最短,
    根据三角形的面积公式得:AB×AC=BC×AM,
    ∴6×1=10AM,
    AM=4.1(cm),
    即DE的最小值是4.1cm.
    故答案为4.1.
    考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.
    11、
    【解析】
    根据勾股定理计算即可.
    【详解】
    解:由勾股定理得,弦=,
    故答案为:.
    本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
    12、x≥0且x≠1
    【解析】
    根据被开方数是非负数且分母不等于零,可得答案.
    【详解】
    由题意,得x≥0且x﹣1≠0,
    解得x≥0且x≠1,
    故答案为:x≥0且x≠1.
    本题考查了函数自变量的取值范围,利用被开方数是非负数且分母不等于零得出不等式是解题关键.
    13、7
    【解析】
    根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.
    【详解】
    ∵矩形ABCD中,G是CD的中点,AB=8,
    ∴CG=DG=×8=4,
    在△DEG和△CFG中,

    ∴△DEG≌△CFG(ASA),
    ∴DE=CF,EG=FG,
    设DE=x,
    则BF=BC+CF=AD+CF=4+x+x=4+2x,
    在Rt△DEG中,EG=,
    ∴EF=,
    ∵FH垂直平分BE,
    ∴BF=EF,
    ∴4+2x=,
    解得x=3,
    ∴AD=AE+DE=4+3=7,
    ∴BC=AD=7.
    故答案为:7.
    此题考查线段垂直平分线的性质、勾股定理、全等三角形的判定与性质,解题关键在于综合运用勾股定理、全等三角形的性质解答即可.
    三、解答题(本大题共5个小题,共48分)
    14、解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
    ∴四边形AEBD是平行四边形.
    ∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.
    ∴∠ADB=90°.
    ∴平行四边形AEBD是矩形.
    (2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:
    ∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.
    ∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.
    【解析】
    试题分析:(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;
    (2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.
    (1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
    ∴四边形AEBD是平行四边形,
    ∵AB=AC,AD是∠BAC的角平分线,
    ∴AD⊥BC,
    ∴∠ADB=90°,
    ∴平行四边形AEBD是矩形;
    (2)当∠BAC=90°时,
    理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,
    ∴AD=BD=CD,
    ∵由(1)得四边形AEBD是矩形,
    ∴矩形AEBD是正方形.
    15、小华1.20~1
    【解析】
    试题分析:(1)小明抽取的样本太片面,信息技术兴趣小组的学生上网时间相对较多,所以不具代表性,而小华抽取的样本是随机抽取具有代表性,所以估计该校全体八年级学生平均每周上网时间为1.2小时;
    (2)根据中位数的概念找出第20和第21名同学所在的上网时间段即可;
    (3)先求出随机调查的40名学生中应当减少上网时间的学生的频率,再乘以320求出学生人数即可.
    试题解析:(1)小明抽取的样本太片面,信息技术兴趣小组的学生上网时间相对较多,所以不具代表性,而小华抽取的样本是随机抽取具有代表性.
    故答案为小华;1.2.
    (2)由图表可知第20和第21名同学所在的上网时间段为:0∼1h/周,
    所以中位数为:0∼1h/周.
    故答案为0∼1.
    (3)随机调查的40名学生中应当减少上网时间的学生的频率为:
    故该校全体八年级学生中应当减少上网时间的人数为:320×0.2=64(人).
    答:该校全体八年级学生中应当减少上网时间的人数为64人.
    16、(1);(2)平行四边形的周长是.
    【解析】
    (1)根据∠BEC=180°﹣(∠EBC+∠ECB),把∠EBC+∠ECB用角平分线定义转化为∠ABC与∠DCB和的一半即可;
    (2)根据角平分线和平行线得到AE=AB,DE=DC,由此可得平行四边形ABCD周长=6AB.
    【详解】
    解:(1) ∵四边形是平行四边形

    又∵平分和
    .
    ∴∠BEC=180°﹣(∠EBC+∠ECB)=90°;
    (2)在中,.


    ,同理:
    ∵平行四边形中,,
    ∴平行四边形的周长是.
    本题主要考查了平行四边形的性质、勾股定理,解题的关键是通过角平分线和平行线转化线段.
    17、(1)非负整数解为1、2、3、4;(2)-3<x≤1,数轴上表示见解析
    【解析】
    (1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
    (2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    (1)5(2x+1)≤3(3x-2)+15,
    10x+5≤9x-6+15,
    10x-9x≤-6+15-5,
    x≤4,
    则不等式的非负整数解为1、2、3、4;
    (2)解不等式2(x-3)<4x,得:x>-3,
    解不等式,得:x≤1,
    则不等式组的解集为-3<x≤1,
    将不等式组的解集表示在数轴上如下:
    考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    18、(1)详见解析;(2)详见解析;(3)
    【解析】
    (1)利用“ASA”判断△BCG≌△CFA,从而得到BG=CF;
    (2)连结AG,利用等腰直角三角形的性质得CG垂直平分AB,则BG=AG,再证明∠D=∠GAD得到AG=DG,所以BG=DG,接着证明△ADE≌△CGE得到DE=GE,则BG=2DE,利用利用△BCG≌△CFA得到CF=BG,于是有CF=2DE;
    (3)先得到BG=2,GE=1,则BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中利用勾股定理得到x +(2x)=3,解得x= ,所以BC=,AB= BC=,然后在Rt△ABD中利用勾股定理计算AD的长.
    【详解】
    (1)证明:∵∠ACB=90°,AC=BC,
    ∴△ACB为等腰直角三角形,
    ∴∠CAF=∠ACG=45°,
    ∵CG平分∠ACB,
    ∴∠BCG=45°,
    在△BCG和△CFA中

    ∴△BCG≌△CFA,
    ∴BG=CF;
    (2)证明:连结AG,
    ∵CG为等腰直角三角形ACB的顶角的平分线,
    ∴CG垂直平分AB,
    ∴BG=AG,
    ∴∠GBA=∠GAB,
    ∵AD⊥AB,
    ∴∠D+∠DBA=90°,∠GAD+∠GAB=90°,
    ∴∠D=∠GAD,
    ∴AG=DG,
    ∴BG=DG,
    ∵CG⊥AB,DA⊥AB,
    ∴CG∥AD,
    ∴∠DAE=∠GCE,
    ∵E为AC边的中点,
    ∴AE=CE,
    在△ADE和△CGE中

    ∴△ADE≌△CGE,
    ∴DE=GE,
    ∴DG=2DE,
    ∴BG=2DE,
    ∵△BCG≌△CFA,
    ∴CF=BG,
    ∴CF=2DE;
    (3)∵DE=1,
    ∴BG=2,GE=1,即BE=3,
    设CE=x,则BC=AC=2CE=2x,
    在Rt△BCE中,x+(2x) =3,解得x=,
    ∴BC=,
    ∴AB= BC=,
    在Rt△ABD中,∵BD=4,AB= ,
    ∴AD=.
    此题考查全等三角形的判定与性质,等腰直角三角形,解题关键在于作辅助线
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    利用因式分解法求出x的值,再根据等腰三角形的性质分情况讨论求解.
    【详解】
    解:x2-5x+4=0,
    (x-1)(x-4)=0,
    所以x1=1,x2=4,
    当1是腰时,三角形的三边分别为1、1、4,不能组成三角形;
    当4是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=1.
    故答案是:1.
    本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论求解.
    20、 (-3,1)
    【解析】
    直接利用已知点坐标得出原点的位置进而得出答案.
    【详解】
    解:如图所示:“兵”的坐标为:(-3,1).
    故答案为(-3,1).
    本题考查坐标确定位置,正确得出原点位置是解题关键.
    21、1
    【解析】
    试题分析:因为函数是y关于x的正比例函数,所以,解得m=1.
    考点:正比例函数
    22、1
    【解析】
    把x=m代入方程,求出2m2﹣3m=1,再变形后代入,即可求出答案.
    【详解】
    ∵m是方程2x2﹣3x﹣1=0的一个根,
    ∴代入得:2m2﹣3m﹣1=0,
    ∴2m2﹣3m=1,
    ∴4m2﹣6m+2019=2(2m2﹣3m)+2019=2×1+2019=1,
    故答案为:1.
    本题考查了求代数式的值和一元二次方程的解,能求出2m2﹣3m=1是解此题的关键.
    23、(只写一个即可)
    【解析】
    设方程为x2+kx+4=0,根据方程有两个相等的实数根可知∆=0,据此列式求解即可.
    【详解】
    设方程为x2+kx+4=0,由题意得
    k2-16=0,
    ∴k=±4,
    ∴一次项为(只写一个即可).
    故答案为:(只写一个即可).
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆

    相关试卷

    2024-2025学年黑龙江省伊春市铁力市第四中学九上数学开学检测模拟试题【含答案】:

    这是一份2024-2025学年黑龙江省伊春市铁力市第四中学九上数学开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年黑龙江省大庆中学数学九年级第一学期开学质量跟踪监视试题【含答案】:

    这是一份2024-2025学年黑龙江省大庆中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东实验中学九年级数学第一学期开学监测试题【含答案】:

    这是一份2024-2025学年广东实验中学九年级数学第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map