2024-2025学年湖北省鄂州市梁子湖区数学九上开学预测试题【含答案】
展开这是一份2024-2025学年湖北省鄂州市梁子湖区数学九上开学预测试题【含答案】,共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)函数的图象经过点,若,则,、0三者的大小关系是( )
A.B.C.D.
2、(4分)某企业今年一月工业产值达20亿元,前三个月总产值达90亿元,求第二、三月份工业产值的月平均增长率.设月平均增长率为,则由题意可得方程( )
A.B.
C.D.
3、(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的角平分线交AC于D,BD=4,过点C作CE⊥BD交BD的延长线于E,则CE的长为( )
A.B.2C.3D.2
4、(4分)下列多项式中,不能运用公式进行分解因式的是( )
A.a2+b2B.x2﹣9C.m2﹣n2D.x2+2xy+y2
5、(4分)在矩形中,,,现将矩形折叠使点与点重合,则折痕的长是( )
A.B.C.D.
6、(4分)在中,若是的正比例函数,则值为
A.1B.C.D.无法确定
7、(4分)函数y=中自变量x的取值范围为( )
A.x≥0B.x≥-1C.x>-1D.x≥1
8、(4分)若将 (a、b均为正数)中的字母a、b的值分别扩大为原来的3倍,则分式的值( )
A.扩大为原来的3倍B.缩小为原来的
C.不变D.缩小为原来的
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)正方形,,,...按如图的方式放置,点,,...和点,,...分别在直线和轴上,则点的坐标为_______.
10、(4分)直线过第_________象限,且随的增大而_________.
11、(4分)某校组织演讲比赛,从演讲主题、演讲内容、整体表现三个方面对选手进行评分.评分规则按主题占,内容占,整体表现占,计算加权平均数作为选手的比赛成绩.小强的各项成绩如表,他的比赛成绩为__分.
12、(4分)如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.
13、(4分)若方程x2+kx+9=0有两个相等的实数根,则k=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)心理学家研究发现,一般情况下,一节课分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为 理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数随时间(分钟)的变化规律如图所示(其中都为线段)
(1)分别求出线段和的函数解析式;
(2)开始上课后第分钟时与第分钟时相比较,何时学生的注意力更集中?
(3)一道数学竞赛题,需要讲分钟,为了效果较好,要求学生的注意力指标数最低达到那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
15、(8分)在如图所示的平面直角坐标系内画一次函数y1=-x+4和y2=2x-5的图象,根据图象写出:
(1)方程-x+4=2x-5的解;
(2)当x取何值时,y1>y2?当x取何值时,y1>0且y2<0?
16、(8分)如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.
(1)若AB=2,求四边形ABFG的面积;
(2)求证:BF=AE+FG.
17、(10分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.
(1)每个文具盒、每支钢笔各多少元?
(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求与的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?
18、(10分)遂宁骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,某车行经营的A型车去年2月份销售总额为3万元,今年经过改造升级后A型车每辆销售价比去年增加300元,若今年2月份与去年2月份卖出的A型车数量相同,则今年2月份A型车销售总额将比去年2月份销售总额增加20%.
(1)求今年2月份A型车每辆销售价多少元?
(2)该车行计划今年3月份新进一批A型车和B型车共40辆,且B型车的进货数量不超过A型车数量的2倍,A、B两种型号车的进货和销售价格如表,问应如何进货才能使这批车获利最多?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)最简二次根式与是同类二次根式,则a的取值为__________.
20、(4分)若直线经过点和,且,是整数,则___.
21、(4分)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出
①AB=__________;
②CD=_______________(提示:过A作CD的垂线);
③BC=_______________.
22、(4分)一次函数y=-2x+1上有两个点A,B,且A(-2,m),B(1,n),则m,n的大小关系为m_____n
23、(4分)二次根式有意义的条件是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知平面直角坐标系中,点P的坐标为
(1)当m为何值时,点P到x轴的距离为1?
(2)当m为何值时,点P到y轴的距离为2?
(3)点P可能在第一象限坐标轴夹角的平分线上吗?若可能,求出m的值;若不可能,请说明理由.
25、(10分)随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者接受并购买新能源汽车。我市某品牌新能源汽车经销商1月至3月份统计,该品牌汽车1月份销售150辆,3月份销售216辆.
(1)求该品牌新能源汽车销售量的月均增长率;
(2)若该品牌新能源汽车的进价为52000元,售价为58000元,则该经销商1月至3月份共盈利多少元?
26、(12分)计算:(1)
(2)已知,试求以a、b、c为三边的三角形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据反比例函数图象上点的坐标特征得到x1•y1=x2•y2=-6,然后根据x1<x2<0即可得到y1与y2的大小关系.
【详解】
根据题意得x1•y1=x2•y2=6,则函数y=的图象位于第一、三象限,且在每一象限内y随x的增大而减小,
∵x1<x2<0,
∴y2<y1<0,
故选A.
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
2、C
【解析】
设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达1亿元,可列方程求解.
【详解】
设月平均增长率的百分数为x,
20+20(1+x)+20(1+x)2=1.
故选:C.
此题考查一元二次方程的应用,解题关键看到是一季度的和做为等量关系列出方程.
3、B
【解析】
延长CE与BA延长线交于点F,首先证明△BAD≌△CAF,根据全等三角形的性质可得BD=CF,再证明△BEF≌△BCE可得CE=EF,进而可得CE=BD,即可得出结果.
【详解】
证明:延长CE与BA延长线交于点F,
∵∠BAC=90°,CE⊥BD,
∴∠BAC=∠DEC,
∵∠ADB=∠CDE,
∴∠ABD=∠DCE,
在△BAD和△CAF中,
,
∴△BAD≌△CAF(ASA),
∴BD=CF,
∵BD平分∠ABC,CE⊥DB,
∴∠FBE=∠CBE,
在△BEF和△BCE中,
,
∴△BEF≌△BCE(AAS),
∴CE=EF,
∴DB=2CE,即CE=BD=×4=2,
故选:B.
本题考查了全等三角形的判定与性质、角平分线定义,熟练掌握全等三角形的判定方法,全等三角形对应边相等是解题的关
4、A
【解析】
A. 不能进行因式分解,故不正确;
B.可用平方差公式分解,即x2-9=(x+3)(x-3),故正确;
C. 可用平方差公式分解,即m2-n2=(m+n)(m-n),故正确;
D.可完全平方公式分解,即=(x+y)2,故正确;
故选A.
5、A
【解析】
设BE=x,表示出CE=8-x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.
【详解】
设BE=x,则CE=BC-BE=8-x,
∵沿EF翻折后点C与点A重合,
∴AE=CE=8-x,
在Rt△ABE中,AB2+BE2=AE2,
即42+x2=(8-x)2
解得x=3,
∴AE=8-3=5,
由翻折的性质得,∠AEF=∠CEF,
∵矩形ABCD的对边AD∥BC,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF=5,
过点E作EH⊥AD于H,则四边形ABEH是矩形,
∴EH=AB=4,
AH=BE=3,
∴FH=AF-AH=5-3=2,
在Rt△EFH中,EF==.
故选A.
本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.
6、A
【解析】
先根据正比例函数的定义列出关于的方程组,求出的值即可.
【详解】
函数是正比例函数,
,
解得,
故选.
本题考查的是正比例函数的定义,正确把握“形如的函数叫正比例函数”是解题的关键.
7、B
【解析】
根据题意得:x+1≥0,
解得:x≥-1.
故选:B.
8、D
【解析】
根据分式的基本性质,可得答案
【详解】
将分式 (a,b均为正数)中a,b的值分别扩大为原来的3倍,则分式的值缩小为原来的
故选D.
本题考查分式的基本性质,掌握运算法则是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
按照由特殊到一般的思路,先求出点A 1、B 1;A 2、B 2;A 3、B 3;A 4、B 4的坐标,得出一般规律,进而得出点A n、Bn的坐标,代入即得答案.
【详解】
解:∵直线,x=0时,y=1,∴OA 1=1,
∴点A 1的坐标为(0,1),点B 1的坐标为(1,1),
∵对直线,当x=1时,y=2,∴A 2C 1=2,
∴点A 2的坐标为(1,2),点B 2的坐标为(3,2),
∵对直线,当x=3时,y=4,∴A 3C 2=4,
∴点A 3的坐标为(3,4),点B 3的坐标为(7,4),
∵对直线,当x=7时,y=8,∴A 4C 3=8,
∴点A 4的坐标为(7,8),点B 4的坐标为(15,8),
……
∴点A n的坐标为(2 n ﹣1﹣1,2 n ﹣1), 点B n的坐标为(2 n ﹣1,2 n ﹣1)
∴点的坐标为(2 2019 ﹣1,2 2018)
本题主要考查一次函数图象上点的坐标特征、正方形的性质和规律的探求,解决这类问题一般从特殊情况入手,找出数量上的变化规律,从而推出一般性的结论.
10、【解析】
根据一次函数的性质解答即可.
【详解】
解:∵-2<0,1>0,
∴直线过第一、二、四象限,且随的增大而减小,
故答案为:一、二、四;减小.
本题考查了一次函数的性质,熟知一次函数、为常数,是一条直线,当,图象经过第一、三象限,随的增大而增大;当,图象经过第二、四象限,随的增大而减小是解答此题的关键.
11、1
【解析】
根据加权平均数的计算公式列式计算可得.
【详解】
解:根据题意,得小强的比赛成绩为,
故答案为1.
本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.
12、1
【解析】
过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值
【详解】
解:
∵四边形ABCD是平行四边形,
∴AD∥BC,
过点A作AE⊥BC于E,
∴当AE∥QP时,则四边形ABPQ是直角梯形,
∵∠B=60°,AB=8cm,
∴BE=4cm,
∵P,Q运动的速度都为每秒1cm,
∴AQ=10﹣t,AP=t,
∵BE=4,
∴EP=t﹣4,
∵AE⊥BC,AQ∥EP,AE∥QP,
∴QP⊥BC,AQ⊥AD,
∴四边形AEPQ是矩形,
∴AQ=EP,
即10﹣t=t﹣4,
解得t=1,
故答案为:1.
此题考查直角梯形,平行四边形的性质,解题关键在于作辅助线
13、±1
【解析】
试题分析:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±1.
故答案为±1.
考点:根的判别式.
三、解答题(本大题共5个小题,共48分)
14、(1)线段AB的解析式为:y1=2x+1;线段CD的解析式为:;(2)第30分钟注意力更集中;(3)能.
【解析】
(1)分别从图象中找到其经过的点,利用待定系数法求得线段和的解析式即可;
(2)根据上题求出的AB和CD的函数表达式,再分别求第5分钟和第30分钟的注意力指数,最后比较判断;
(3)分别求出注意力指数为38时的两个时间,再将两时间之差和17比较,大于17则能讲完,否则不能.
【详解】
解:(1)设线段AB所在的直线的解析式为y1=k1x+1,
把B(10,40)代入得,k1=2,
∴线段AB的解析式为:y1=2x+1.
设线段CD所在直线的解析式为
把C(25,40),D(40,25)代入得:,解得
∴线段CD的解析式为:
(2)当x1=5时,y1=2×5+1=30,
当x2=30时,y2=35
∴y1<y2
∴第30分钟注意力更集中;
(3)令y1=38,
∴38=2x+1,
∴x1=9
令y2=38,
∴
27-9=18>17
∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.
主要考查了一次函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.
15、(1)x=3.(2)当x<3时,y1>y2.当x<2.5时,y1>0且y2<0.
【解析】
分析:(1)根据题意画出一次函数和的图象,根据两图象的交点即可得出x的值;
(2)根据函数图象可直接得出结论.
详解:(1)∵一次函数和的图象相交于点(3,1),
∴方程的解为x=3;
(2)由图象可知,
当时, 当时,且
点睛:考查一次函数与一元一次不等式,一次函数与一元一次方程,注意数形结合思想在解题中的应用.
16、(1) ;(2)证明见解析.
【解析】
(1)根据菱形的性质和垂线的性质可得∠ABD=30°,∠DAE=30°,然后再利用三角函数及勾股定理在Rt△ABF中,求得AF,在Rt△AFG中,求得FG和AG,再运用三角形的面积公式求得四边形ABFG的面积;
(2)设菱形的边长为a,根据(1)中的结论在Rt△ABF、Rt△AFG、Rt△ADE 中分别求得BF、FG、AE,然后即可得到结论.
【详解】
解:(1)∵四边形ABCD是菱形,
∴AB∥CD,BD平分∠ABC,
又∵AE⊥CD,∠ABC=60°,
∴∠BAE=∠DEA=90°,∠ABD=30°,
∴∠DAE=30°,
在Rt△ABF中,tan30°=,即,解得AF=,
∵FG⊥AD,
∴∠AGF=90°,
在Rt△AFG中,FG=AF=,
∴AG==1.
所以四边形ABFG的面积=S△ABF+S△AGF=;
(2)设菱形的边长为a,则在Rt△ABF中,BF=,AF=,
在Rt△AFG中,FG=AF=,
在Rt△ADE中,AE=,
∴AE+FG=,
∴BF=AE+FG.
本题主要考查了菱形的性质、勾股定理、三角形的面积公式、利用三角函数值解直角三角形等知识,熟练掌握基础知识是解题的关键.
17、 (1);(2) 147元.
【解析】
(1)设每个文具盒x元,每支钢笔y元,由题意得:
,解之得:.
(2)由题意得:w=14x+15(10-x)=150-x,
∵w随x增大而减小,,
∴当x=3时,
W最大值=150-3=147,即最多花147元.
18、(1)今年的销售价为1800元;(2)购进A型车14辆,B型车26辆,获利最多.
【解析】
(1)设去年2月份A型车每辆的售价为x元,则今年2月份A型车每辆的售价为(x+300)元,然后依据今年2月份与去年2月份卖出的A型车数量相同列方程求解即可;
(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(40﹣m)辆,然后列出W与m的函数关系式,然后依据一次函数的性质求解即可.
【详解】
解:(1)设去年2月份A型车每辆的售价为x元,
则今年2月份A型车每辆的售价为(x+300)元,
根据题意得:,
解得:x=1500,
经检验,x=1500是原方程的解,
则今年的销售价为1500+300=1800元.
(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(40﹣m)辆,
根据题意得:
w=(1800﹣900)m+(2000﹣1000)(40﹣m)=﹣10m+1.
又∵40﹣m≤2m,
∴m≥13.
∵k=﹣100<0,
∴当m=14时,w取最大值.
答:购进A型车14辆,B型车26辆,获利最多.
本题考查了一次函数的应用、分式方程的应用,依据题意列出分式方程、得到W与m的函数关系式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分析:根据最简二次根式及同类二次根式的定义,令被开方数相等解方程.
详解:根据题意得,3a+1=2
解得,a=
故答案为.
点睛:此题主要考查了最简二次根式及同类二次根式的定义,正确理解同类二次根式的定义是解题的关键.
20、1.
【解析】
把和代入,列方程组得到,由于,于是得到,即可得到结论.
【详解】
依题意得:,
∴k=n﹣3,
∵0<k<2,
∴0<n﹣3<2,
∴3<n<5,
∵n是整数,则n=1
故答案为1.
本题考查了一次函数的图象与系数的关系,用含n的代数式表示出k是解答本题的关键.注重考察学生思维的严谨性,易错题,难度中等.
21、1 6 2
【解析】
根据图1和图2得当t=1时,点P到达A处,即AB=1;当S=12时,点P到达点D处,即可求解.
【详解】
①当t=1时,点P到达A处,即AB=1.
故答案是:1;
②过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,
∵AC=AD,
∴DE=CE=,
∴CD=6,
故答案是:6;
③当S=12时,点P到达点D处,则S=CD•BC=(2AB)•BC=1×BC=12,
则BC=2,
故答案是:2.
考查了动点问题的函数图象,注意分类讨论的思想、函数的知识和等腰三角形等的综合利用,具有很强的综合性.
22、>
【解析】
根据一次函数增减性的性质即可解答.
【详解】
∵一次函数y=-2x+1中,-2<0,
∴y随x的增大而减小,
∵A(-2,m),B(1,n)在y=-2x+1的图象上,-2<1,
∴m>n.
故答案为:>.
本题考查了一次函数的性质,熟练运用一次函数的性质是解决问题的关键.
23、
【解析】
根据被开方式大于零列式求解即可.
【详解】
由题意得
x-3>0,
∴x>3.
故答案为:x>3.
本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
二、解答题(本大题共3个小题,共30分)
24、 (1), ;(2),;(3)不可能,理由见解析.
【解析】
(1)根据点到轴的距离为,可求的值;
(2)根据点到轴的距离为,可求的值;
(3)根据角平分线上的点到角两边距离相等,可求的值,且点在第一象限,可求的范围,即可判断可能性.
【详解】
解:点P到x轴的距离为1,,
点P到y轴的距离为2,,
如果点P可能在第一象限坐标轴夹角的平分线上点P在第一象限
,,不合题意
点P不可能在第一象限坐标轴夹角的平分线上.
本题考查了点到坐标,关键是利用点的坐标的性质解决问题.
25、(1)该品牌新能源汽车销售量的月均增长率为;(2)盈利3276000元.
【解析】
(1)设该品牌电动自行车销售量的月均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.
(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.
【详解】
(1)设该品牌新能源汽车销售量的月均增长率x,根据题意列方程
解得,(舍去)
(2)
答:(1)该品牌新能源汽车销售量的月均增长率为;(2)共盈利3276000元.
此题考查一元二次方程的应用,解题关键在于根据题意列出方程.
26、(1);(2)以a、b、c为三边的三角形的面积为1.
【解析】
(1)先根据二次根式的乘除法则和完全平方公式计算,然后化简后合并即可;
(2)利用非负数的性质得到a−1=0,b−2=0,c−=0,解得a=1,b=2,c=,利用勾股定理的逆定理得到以a、b、c为三边的三角形为直角三角形,其中c为斜边,然后根据三角形面积公式计算.
【详解】
解:(1)原式;
(2)由题意得:,
,,,
,,,
,,
∴以a、b、c为三边的三角形是直角三角形.
∴它的面积是.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了勾股定理的逆定理.
题号
一
二
三
四
五
总分
得分
主题
内容
整体表现
85
92
90
A型车
B型车
进货价格(元/辆)
900
1000
销售价格(元/辆)
今年的销售价格
2000
相关试卷
这是一份2024-2025学年湖北省黄冈实验中学九上数学开学预测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北省鸡泽县数学九上开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年安徽省桐城市黄岗九上数学开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。