|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年湖北省广水市城郊街道办事处中学九年级数学第一学期开学检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年湖北省广水市城郊街道办事处中学九年级数学第一学期开学检测模拟试题【含答案】01
    2024-2025学年湖北省广水市城郊街道办事处中学九年级数学第一学期开学检测模拟试题【含答案】02
    2024-2025学年湖北省广水市城郊街道办事处中学九年级数学第一学期开学检测模拟试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年湖北省广水市城郊街道办事处中学九年级数学第一学期开学检测模拟试题【含答案】

    展开
    这是一份2024-2025学年湖北省广水市城郊街道办事处中学九年级数学第一学期开学检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)菱形的两条对角线长分别为6㎝和8㎝,则这个菱形的面积为( )
    A.48B.C.D.18
    2、(4分)如图,矩形ABCD,对角线AC、BD交于点O,AE⊥BD于点E,∠AOB=45°,则∠BAE的大小为( )
    A.15°B.22.5°C.30°D.45°
    3、(4分)如果把分式中的x和y都扩大3倍,那么分式的值( )
    A.不变B.扩大3倍C.缩小3倍D.无法确定
    4、(4分)如图,,点是垂直平分线的交点,则的度数是( )
    A.B.
    C.D.
    5、(4分)把一元二次方程配方后,下列变形正确的是( )
    A.B.C.D.
    6、(4分)在下列性质中,平行四边形不一定具有的是( )
    A.对边相等B.对边平行C.对角互补D.内角和为360°
    7、(4分)下列函数(1)(2)(3)(4)(5)中,一次函数有( )个.
    A.1B.2C.3D.4
    8、(4分)如图,在中,,于点,和的角平分线相较于点,为边的中点,,则( )
    A.125°B.145°C.175°D.190°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一个黄金矩形的长为2,则其宽等于______.
    10、(4分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=____.
    11、(4分)我们知道:当时,不论取何实数,函数的值为3,所以直线一定经过定点;同样,直线一定经过的定点为______.
    12、(4分)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为__________.
    13、(4分)当x___________时,是二次根式.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)用圆规、直尺作图,不写作法,但要保留作图痕迹.
    已知:四边形ABCD
    求作:点P,使∠PBC=∠PCB,且点P到AD和DC的距离相等.
    15、(8分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.
    (1)如图①,当点D落在BC边上时,求点D的坐标;
    (2)如图②,当点D落在线段BE上时,AD与BC交于点H.
    ①求证△ADB≌△AOB;
    ②求点H的坐标.
    (3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).
    16、(8分)一次期中考试中,甲、乙、丙、丁、戍五位同学的数学、英语成绩等有关信息如下 表所示:(单位:分)
    (1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;
    (2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择.标准分 的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看, 标准分大的考试成绩更好.请问甲同学在本次考试中,数学与英语哪个学科考 得更好?
    17、(10分)如图,直线y1=2x-2的图像与y轴交于点A,直线y2=-2x+6的图像与y轴交于点B,两者相交于点C.
    (1)方程组的解是______;
    (2)当y1>0与y2>0同时成立时,x的取值范围为_____;
    (3)求△ABC的面积;
    (4)在直线y1=2x-2的图像上存在异于点C的另一点P,使得△ABC与△ABP的面积相等,请求出点P的坐标.
    18、(10分)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段、分别表示父、子俩送票、取票过程中,离体育馆的路程(米)与所用时间(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
    (1)求点的坐标和所在直线的函数关系式
    (2)小明能否在比赛开始前到达体育馆
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.
    20、(4分)计算: _____________.
    21、(4分)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.
    22、(4分)如图,把菱形沿折叠,使点落在上的点处,若,则的大小为 _____________.
    23、(4分)如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是( )
    A.1+B.4+C.4D.-1+
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图所示,四边形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
    (1)求证:BD⊥CB;
    (2)求四边形 ABCD 的面积;
    (3)如图 2,以 A 为坐标原点,以 AB、AD所在直线为 x轴、y轴建立直角坐标系,
    点P在y轴上,若 S△PBD=S四边形ABCD,求 P的坐标.
    25、(10分)如图,在△ABC中,∠ACB=90°,AC=30cm,BC=40cm.点P从点A出发,以5cm/s的速度沿AC向终点C匀速移动.过点P作PQ⊥AB,垂足为点Q,以PQ为边作正方形PQMN,点M在AB边上,连接CN.设点P移动的时间为t(s).
    (1)PQ=______;(用含t的代数式表示)
    (2)当点N分别满足下列条件时,求出相应的t的值;①点C,N,M在同一条直线上;②点N落在BC边上;
    (3)当△PCN为等腰三角形时,求t的值.
    26、(12分)如图,⊿是直角三角形,且,四边形是平行四边形,为的中点,平分,点在上,且.
    求证:
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题解析:根据菱形的面积公式:
    故选B.
    2、B
    【解析】
    根据同角的余角相等易证∠BAE=∠ADE,根据矩形对角线相等且互相平分的性质,可得∠OAB=∠OBA,在Rt△ABD中,已知∠OBA即可求得∠ADB的大小,从而得到结果.
    【详解】
    ∵四边形ABCD是矩形,AE⊥BD,
    ∴∠BAE+∠ABD=90°,∠ADE+∠ABD=90°,
    ∴∠BAE=∠ADE
    ∵矩形对角线相等且互相平分,
    ∴∠OAB=∠OBA=,
    ∴∠BAE=∠ADE=90﹣67.5°=22.5°,
    故选 B.
    本题考查了矩形的性质,解题的关键是熟练掌握矩形的对角线相等且互相平分.
    3、A
    【解析】
    根据题意得出算式,再进行化简,即可得出选项.
    【详解】
    解:把分式中的x和y都扩大3倍为 =,即分式的值不变,
    故选:A.
    本题考查分式的基本性质,能熟记分式的基本性质的内容是解此题的关键.
    4、B
    【解析】
    利用线段垂直平分线的性质即可得出答案.
    【详解】
    解:
    连接OA,OB
    ∵∠BAC=80°
    ∴∠ABC+∠ACB=100°
    又∵O是AB和AC垂直平分线的交点
    ∴OA=OB,OA=OC
    ∴∠OBA=∠OAB,∠OCA=∠OAC,OB=OC
    ∴∠OBA+∠OCA=80°
    ∴∠OBA+∠OCB=100°-80°=20°
    又∵OB=OC
    ∴∠BCO=∠CBO=10°
    故答案选择B.
    本题主要考查了线段垂直平分线和等腰三角形的性质.
    5、A
    【解析】
    先把-1移到右边,然后两边都加4,再把左边写成完全平方的形式即可.
    【详解】
    ∵,
    ∴,
    ∴,
    ∴.
    故选A.
    本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.
    6、C
    【解析】
    A、平行四边形的对边相等,故本选项正确;
    B、平行四边形的对边平行,故本选项正确;
    C、平行四边形的对角相等不一定互补,故本选项错误;
    D、平行四边形的内角和为360°,故本选项正确;故选C
    7、C
    【解析】
    根据一次函数的定义进行分析,即可得到答案.
    【详解】
    解:根据题意,一次函数有:,,,共3个;
    故选择:C.
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
    8、C
    【解析】
    根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.
    【详解】
    如图:
    ∵CD⊥AB,F为边AC的中点,
    ∴DF=AC=CF,
    又∵CD=CF,
    ∴CD=DF=CF,
    ∴△CDF是等边三角形,
    ∴∠ACD=60°,
    ∵∠B=50°,
    ∴∠BCD+∠BDC=130°,
    ∵∠BCD和∠BDC的角平分线相交于点E,
    ∴∠DCE+∠CDE=65°,
    ∴∠CED=115°,
    ∴∠ACD+∠CED=60°+115°=175°,
    故选:C.
    本题主要考查了直角三角形的斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    由黄金矩形的短边与长边的比为,可设黄金矩形的宽为x,列方程即可求出x的值.
    【详解】
    解:∵黄金矩形的短边与长边的比为,
    ∴设黄金矩形的宽为x,
    则,
    解得,x=﹣1,
    故答案为:.
    本题考查了黄金矩形的性质,解题关键是要知道黄金矩形的短边与长边的比为.
    10、-1
    【解析】
    设点A(x,),表示点B的坐标,然后求出AB的长,再根据平行四边形的面积公式列式计算即可得解.
    【详解】
    设点A(x,),则B(,),
    ∴AB=x-,
    则(x-)•=5,
    k=-1.
    故答案为:-1.
    本题考查了反比例函数系数的几何意义,用点A,B的横坐标之差表示出AB的长度是解题的关键.
    11、
    【解析】
    先将y=(k-2)x+3k化为:y=(x+3)k-2x,可得当x=-3时,不论k取何实数,函数y=(x+3)k-2x的值为6,即可得到直线y=(k-2)x+3k一定经过的定点为(-3,6).
    【详解】
    根据题意,y=(k-2)x+3k可化为:y=(x+3)k-2x,
    ∴当x=-3时,不论k取何实数,函数y=(x+3)k-2x的值为6,
    ∴直线y=(k-2)x+3k一定经过的定点为(-3,6),
    故答案为:(-3,6).
    本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.
    12、9
    【解析】
    设每轮传染中平均一个人传染的人数为x人,
    那么由题意可知(1+x)2=100,
    解得x=9或-11
    x=-11不符合题意,舍去.
    那么每轮传染中平均一个人传染的人数为9人
    13、≤;
    【解析】
    因为二次根式满足的条件是:含二次根号,被开方数大于或等于0,利用二次根式满足的条件进行求解.
    【详解】
    因为是二次根式,
    所以,
    所以,
    故答案为.
    本题主要考查二次根式的定义,解决本题的关键是要熟练掌握二次根式的定义.
    三、解答题(本大题共5个小题,共48分)
    14、图形见解析.
    【解析】
    作∠ADC的平分线和BC的垂直平分线便可.
    【详解】
    解:如图所示,点P即为所求.
    考查线段垂直平分线和角平分线的作图运用.
    15、(1)D(1,3);(2)①详见解析;②H(,3);(3)≤S≤.
    【解析】
    (1)如图①,在Rt△ACD中求出CD即可解决问题;
    (2)①根据HL证明即可;
    ②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题;
    (3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题;
    【详解】
    (1)如图①中,
    ∵A(5,0),B(0,3),
    ∴OA=5,OB=3,
    ∵四边形AOBC是矩形,
    ∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,
    ∵矩形ADEF是由矩形AOBC旋转得到,
    ∴AD=AO=5,
    在Rt△ADC中,CD==4,
    ∴BD=BC-CD=1,
    ∴D(1,3).
    (2)①如图②中,
    由四边形ADEF是矩形,得到∠ADE=90°,
    ∵点D在线段BE上,
    ∴∠ADB=90°,
    由(1)可知,AD=AO,又AB=AB,∠AOB=90°,
    ∴Rt△ADB≌Rt△AOB(HL).
    ②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,
    又在矩形AOBC中,OA∥BC,
    ∴∠CBA=∠OAB,
    ∴∠BAD=∠CBA,
    ∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m,
    在Rt△AHC中,∵AH2=HC2+AC2,
    ∴m2=32+(5-m)2,
    ∴m=,
    ∴BH=,
    ∴H(,3).
    (3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=•DE•DK=×3×(5-)=,
    当点D在BA的延长线上时,△D′E′K的面积最大,最大面积=×D′E′×KD′=×3×(5+)=.
    综上所述,≤S≤.
    本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题.
    16、(1)70,6;(2)从标准分来看,甲同学数学比英语考得更好.
    【解析】
    (1)由平均数、标准差的公式计算即可;
    (2)代入公式:标准分=(个人成绩-平均成绩)÷成绩标准差,再比较即可.
    【详解】
    (1)数学平均分为=(71+72+69+68+70)÷5=70分,
    英语考试成绩的标准差:

    =6分
    (2)设甲同学数学考试成绩的标准分为P数学,英语考试成绩的标准分为,则
    =(71-70)÷, =(88-85)÷6= .
    ∵ ,
    ∴从标准分来看,甲同学数学比英语考得更好.
    本题考查平均数和标准差的计算,解题关键是熟记公式.
    17、 (1) ;(2) 1<x<3;(3)8;(4) P(-2,-6)
    【解析】
    (1)根据图像可知,两条直线的交点即为方程组的解;(2)找出两条直线的图像在x轴上方的公共部分的x的取值范围即可;(3)令x=0,求出y1与y2的值,即可得A、B两点的坐标,进而可得AB的长度,根据C点坐标为(2,2),可得△ABC的高,即可求出面积;(4)令P(x0,2x0-2),根据三角形面积公式可得x0=±2,由点P异于点C可得x0=-2,代入y1=2x-2即可的P点坐标.
    【详解】
    (1)由图像可知直线y1=2x-2的图像与直线y2=-2x+6的交点坐标为(2,2)
    ∴方程组的解集为,
    (2)根据图像可知:当y1>0与y2>0同时成立时,x的取值范围为1<x<3.
    (3)∵令x=0,则y1=-2,y2=6,
    ∴A(0,-2),B(0,6).
    ∴AB=8.
    ∴S△ABC=×8×2=8.
    (4)令P(x0,2x0-2),则S△ABP=×8×|x0|=8,
    ∴x0=±2.
    ∵点P异于点C,
    ∴x0=-2,2x0-2=-6.
    ∴P(-2,-6).
    此题考查了一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,三角形面积,以及两一次函数的交点, 熟练掌握一次函数图像的特征是解题关键.
    18、 (1) 点B的坐标为(15,900),直线AB的函数关系式为:.
    (2)小明能在比赛开始前到达体育馆.
    【解析】
    (1)从图象可以看出:父子俩从出发到相遇时花费了15分钟,设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分,则路程和为1,即可列出方程求出小明的速度,再根据A,B两点坐标用待定系数法确定函数关系式;(2)直接利用一次函数的性质即可求出小明的父亲从出发到体育馆花费的时间,经过比较即可得出是否能赶上.
    【详解】
    (1)从图象可以看出:父子俩从出发到相遇时花费了15分钟
    设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分
    依题意得:15x+45x=1.
    解得:x=2.
    所以两人相遇处离体育馆的距离为
    2×15=900米.
    所以点B的坐标为(15,900).
    设直线AB的函数关系式为s=kt+b(k≠0).
    由题意,直线AB经过点A(0,1)、B(15,900)
    得:解之,得
    ∴直线AB的函数关系式为:.
    (2)在中,令S=0,得.
    解得:t=3.
    即小明的父亲从出发到体育馆花费的时间为3分钟,因而小明取票的时间也为3分钟.
    ∵3<25,∴小明能在比赛开始前到达体育馆.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    先解出关于x的不等式,由数轴上表示的解集求出的范围即可.
    【详解】
    解:,
    不等式组整理得:,
    由数轴得:,可得,
    解得:,
    故答案为2
    此题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.
    20、1
    【解析】
    根据开平方运算的法则计算即可.
    【详解】
    1.
    故答案为:1.
    本题考查了实数的运算-开方运算,比较简单,注意符号的变化.
    21、
    【解析】
    设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.
    【详解】
    设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C
    ∴OB=3
    ∵经过原点的直线将图形分成面积相等的两部分
    ∴直线上方面积分是4
    ∴三角形ABO的面积是5


    ∴直线经过点
    设直线l为


    ∴直线的函数关系式为
    本题考查了一次函数,难点在于利用已知条件中的面积关系,熟练掌握一次函数相关知识点是解题关键.
    22、
    【解析】
    根据菱形性质,得到∠ADC=∠B=70°,从而得出∠AED=∠ADE,又因为AD∥BC,得到∠DAE=∠AEB,进而求出 ∠ADE=∠AED=55°,从而得到∠EDC
    【详解】
    ∵四边形ABCD为菱形,∴∠ADC=∠B=70°,AD∥BC,AD=AB
    ∵AD=AB=AE,∴∠AED=∠ADE
    ∵AD∥BC,∴∠DAE=∠AEB=70°
    ∴∠ADE=∠AED=(180°-∠DAE)÷2=55°
    ∴∠EDC=70°-∠ADE=70°-55°=15°
    本题主要考查菱形的基本性质,在计算过程中综合运用了等边对等角,三角形内角和定理等知识点
    23、A
    【解析】
    根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.
    【详解】
    如图,
    ∵点A坐标为(-2,2),
    ∴k=-2×2=-4,
    ∴反比例函数解析式为y=-,
    ∵OB=AB=2,
    ∴△OAB为等腰直角三角形,
    ∴∠AOB=45°,
    ∵PQ⊥OA,
    ∴∠OPQ=45°,
    ∵点B和点B′关于直线l对称,
    ∴PB=PB′,BB′⊥PQ,
    ∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
    ∴B′P⊥y轴,
    ∴点B′的坐标为(- ,t),
    ∵PB=PB′,
    ∴t-2=|-|=,
    整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),
    ∴t的值为.
    故选A.
    本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(1)36m1;(3)P 的坐标为(0,-1)或(0,10).
    【解析】
    (1)先根据勾股定理求出 BD 的长度,然后根据勾股定理的逆定理,即可证明
    BD⊥BC;
    (1)根据四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积,代入数据计算即可求解;
    (3)先根据 S△PBD=S四边形 ABCD,求出 PD,再根据 D 点的坐标即可求解.
    【详解】
    (1)证明:连接 BD.
    ∵AD=4m,AB=3m,∠BAD=90°,
    ∴BD=5m.
    又∵BC=11m,CD=13m,
    ∴BD1+BC1=CD1.
    ∴BD⊥CB;
    (1)四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积
    = ×3×4+ ×11×5
    =6+30
    =36(m1).
    故这块土地的面积是 36m1;
    (3)∵S△PBD=S 四边形ABCD
    ∴•PD•AB= ×36,
    ∴•PD×3=9,
    ∴PD=6,
    ∵D(0,4),点 P 在 y 轴上,
    ∴P 的坐标为(0,-1)或(0,10).
    本题主要考查了勾股定理、勾股定理的逆定理、三角形的面积等知识点,解此题的关键是能求出∠DBC=90°.
    25、(1)4t;(2)①,②;(3)秒或秒或秒.
    【解析】
    (1)先求出AB=50,sinA==,csA==,进而求出AQ=3t,PQ=4t,即可得出结论;
    (2)先判断出PN=QM=PQ=4t,
    ①求出CD=24,AD=18,进而判断出AQ+QM=AD=18,建立方程即可得出结论;
    ②判断出∠APQ=∠PNC,进而得出△AQP∽△PCN,建立方程即可得出结论;
    (3)分三种情况,利用等腰三角形的性质建立方程求解即可得出结论.
    【详解】
    解:(1)在Rt△ABC中,根据勾股定理得,AB=50,
    ∴sinA==,csA==
    ∵PQ⊥AB,
    ∴∠AQP=90°,
    由运动知,AP=5t,
    在Rt△AQP中,AQ=AP•csA=×5=3t,PQ=AP•sinA=4t,
    故答案为:4t;
    (2)由(1)知,AQ=3t,PQ=4t,
    ∵四边形PQMN是正方形,
    ∴PN=QM=PQ=4t,
    ①如图1,
    由(1)知,AB=50,
    过点C作CD⊥AB于D,
    ∴AB•CD=AC•BC,
    ∴CD=24,
    在Rt△ADQ中,AD==18,
    ∵点C,N,M在同一条直线上,
    ∴点M落在点D,
    ∴AQ+QM=AD=18,
    由(1)知,QM=PQ=4t,AQ=3t,
    ∴4t+3t=18,
    ∴t=;
    ②点N落在BC上时,∠PCN=∠PCB=90°=∠AQP,
    ∴∠CPN+∠CNP=90°,
    ∵∠QPN=90°
    ∴∠CPN+∠APQ=90°,
    ∴∠APQ=∠PNC,
    ∵∠AQP=∠PCN,
    ∴△AQP∽△PCN,
    ∴,
    ∴,
    ∴t=;
    (3)当PC=PN时,30-5t=4t,
    ∴t=,
    当PC=NC时,如图2,过点C作CF⊥PN于F,延长CF交AB于D,
    ∴PF=PN=2t,
    ∴QD=2t,
    根据勾股定理得,AQ==3t,
    ∴AD=AQ+QD=5t=18,
    ∴t=,
    当PN=NC时,如图3,过点N作NG⊥AC于G,
    ∴PG=PC=,
    易知,△PNG∽△APQ,
    ∴,
    ∴,
    ∴t=,
    即:当△PCN是等腰三角形时,秒或秒或秒.
    此题是四边形综合题,主要考查了正方形的性质,相似三角形的性质和判定,勾股定理,锐角三角函数,用方程的思想解决问题是解本题的关键.
    26、证明见解析.
    【解析】
    分析:延长DE交AB于点G,连接AD.构建全等三角形△AED≌△DFB(SAS),则由该全等三角形的对应边相等证得结论.
    详解:证明:延长DE交AB于点G,连接AD.
    ∵四边形BCDE是平行四边形,
    ∴ED∥BC,ED=BC.
    ∵点E是AC的中点,∠ABC=90°,
    ∴AG=BG,DG⊥AB.
    ∴AD=BD,
    ∴∠BAD=∠ABD.
    ∵BD平分∠ABC,
    ∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.
    又BF=BC,
    ∴BF=DE.
    ∴在△AED与△DFB中,

    ∴△AED≌△DFB(SAS),
    ∴AE=DF,即DF=AE.
    点睛:本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
    题号





    总分
    得分





    平均分
    标准差
    数学
    71
    72
    69
    68
    70
    英语
    88
    82
    94
    85
    76
    85
    相关试卷

    2024-2025学年湖北省黄冈中学九年级数学第一学期开学质量检测试题【含答案】: 这是一份2024-2025学年湖北省黄冈中学九年级数学第一学期开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年城郊中学数学九年级第一学期开学考试模拟试题【含答案】: 这是一份2024-2025学年城郊中学数学九年级第一学期开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年湖北省广水市城郊街道办事处中学数学九上期末监测试题含答案: 这是一份2023-2024学年湖北省广水市城郊街道办事处中学数学九上期末监测试题含答案,共6页。试卷主要包含了答题时请按要求用笔,已知两个相似三角形的相似比为4等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map