2024-2025学年湖北省十堰市第六中学九年级数学第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是( )
A.B.C.D.
2、(4分)在平面直角坐标系内,点在第三象限,则m的取值范围是
A.B.C.D.
3、(4分)一家鞋店在一段时间内销售了某种男鞋200双,各种尺码鞋的销售量如下表所示:
一般来讲,鞋店老板比较关心哪种尺码的鞋最畅销,也就是关心卖出的鞋的尺码组成的一组数据是()
A.平均数B.中位数C.众数D.方差
4、(4分)下列条件中,不能判定四边形ABCD为菱形的是( ).
A.AC⊥BD,AC与BD互相平分
B.AB=BC=CD=DA
C.AB=BC,AD=CD,且AC⊥BD
D.AB=CD,AD=BC,AC⊥BD
5、(4分)矩形各内角的平分线能围成一个( )
A.矩形B.菱形C.等腰梯形D.正方形
6、(4分)化简(﹣)2的结果是( )
A.±3B.﹣3C.3D.9
7、(4分)边长为a,b的长方形,它的周长为14,面积为10,则ab+ab的值为( )
A.35B.70C.140D.280
8、(4分)下列各点中,在函数y=-图象上的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于t的分式方程=1的解为负数,则m的取值范围是______.
10、(4分)如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为__________.
11、(4分)已知一组数据,,,,的平均数是2,那么另一组数据,,,,的平均数是______.
12、(4分)如图,△ABC中,BD⊥CA,垂足为D,E是AB的中点,连接DE.若AD=3,BD=4,则DE的长等于_____
13、(4分)若一个等腰三角形的顶角等于70°,则它的底角等于________度,
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,点.
(1)直接写出直线的解析式;
(2)如图1,过点的直线交轴于点,若,求的值;
(3)如图2,点从出发以每秒1个单位的速度沿方向运动,同时点从出发以每秒0.6个单位的速度沿方向运动,运动时间为秒(),过点作交轴于点,连接,是否存在满足条件的,使四边形为菱形,判断并说明理由.
15、(8分)以△ABC的三边在BC同侧分别作三个等边三角形△ABD,△BCE ,△ACF,试回答下列问题:
(1)四边形ADEF是什么四边形?请证明:
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
(3)当△ABC满足什么条件时,四边形ADEF是菱形?
(4)当△ABC满足什么条件时,能否构成正方形?
(5)当△ABC满足什么条件时,无法构成四边形?
16、(8分)已知在等腰三角形中,是的中点,是内任意一点,连接,过点作, 交的延长线于点,延长到点,使得,连接.
(1)如图1,求证:四边形是平行四边形;
(2)如图2,若,求证:且;
17、(10分)感知:如图,在菱形ABCD中,,点E、F分别在边AB、AD上若,易知≌.
探究:如图,在菱形ABCD中,,点E、F分别在BA、AD的延长线上若,与是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展:如图,在▱ABCD中,,点O是AD边的垂直平分线与BD的交点,点E、F分别在OA、AD的延长线上若,,,求的度数.
18、(10分)如图,AD是△ABC边BC上的高,用尺规在线段AD上找一点E,使E到AB的距离等于ED(不写作法,保留作图痕迹)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若,则.
20、(4分)已知,,,则的值是_______.
21、(4分)在比例尺为1∶1 00 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离 ▲ km.
22、(4分)如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=10,则DOE的周长为_____.
23、(4分)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.
25、(10分)化简:÷(-a-2),并代入一个你喜欢的值求值.
26、(12分)2020年初,“新型冠状病毒”肆虐全国,武汉“封城”. 大疫无情人有情,四川在做好疫情防控的同时,向湖北特别是武汉人们伸出了援手,医疗队伍千里驰援、社会各界捐款捐物. 某运输公司现有甲、乙两种货车,要将234吨生活物资从成都运往武汉,已知2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资.
(1)求每辆甲车和每辆乙车一次分别能装运多少吨生活物资?
(2)从成都到武汉,已知甲车每辆燃油费2000元,乙车每辆燃油费2600元. 在不超载的情况下公司安排甲、乙两种车共10辆将所有生活物资运到武汉,问公司有几种派车方案?哪种方案所用的燃油费最少?最低燃油费是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
∵正比例函数且随的增大而减少,
在直线中,
∴函数图象经过一、三、四象限.
故选D.
2、C
【解析】
由于在平面直角坐标系内,点在第三象限,根据点在平面直角坐标系内符号特征可得:,解不等式组可得:不等式组的解集是.
【详解】
因为点在第三象限,
所以,
解得不等式组的解集是,
故选C.
本题主要考查点在平面直角坐标系内符号特征,解决本题的关键是要熟练掌握点在平面直角坐标系内点的符号特征.
3、C
【解析】
∵众数是在一组数据中,出现次数最多的数据,体现数据的最集中的一点,这样可以确定进货的数量,
∴鞋店老板最喜欢的是众数.
故选C.
4、C
【解析】
解:A、根据AC与BD互相平分得四边形ABCD是平行四边形,再有AC⊥BD ,可得此四边形是平行四边形;
B、根据AB=BC=CD=DA ,可知四边形是平行四边形;
C、由AB=BC,AD=CD,不能得到此四边形是平行四边形,所以不能判定四边形ABCD是菱形;
D、由AB=CD,AD=BC得四边形是平行四边形,再有AC⊥BD,可得四边形是菱形.
故选C.
本题考查菱形的判定.
5、D
【解析】
根据矩形的性质及角平分线的性质进行分析即可.
【详解】
矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°
又知两条角平分线与矩形的一边构成等腰直角三角形,
所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.
故选D.
此题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角
6、C
【解析】
根据二次根式的性质即可求出答案.
【详解】
原式=3,
故选:C.
本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.
7、B
【解析】
∵长方形的面积为10,
∴ab=10,
∵长方形的周长为14,
∴2(a+b)=14,
∴a+b=7.
对待求值的整式进行因式分解,得
a2b+ab2=ab(a+b),
代入相应的数值,得
.
故本题应选B.
8、C
【解析】
把各点代入解析式即可判断.
【详解】
A.∵(-2)×(-4)=8≠-6,∴此点不在反比例函数的图象上,故本选项错误;
B.∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误;
C.∵(-1)×6=-6,∴此点在反比例函数的图象上,故本选项正确;
D.∵×3=-≠-6,∴此点不在反比例函数的图象上,故本选项错误.
故选C.
此题主要考查反比例函数的图像,解题的关键是将各点代入解析式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m<1
【解析】
分式方程去分母转化为整式方程,求出方程的解,由分式方程的解是负数确定出m的范围即可.
【详解】
去分母得:m-5=t-2,
解得:t=m-1,
由分式方程的解为负数,得到m-1<0,且m-1≠2,
解得:m<1,
故答案为:m<1.
此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.
10、6
【解析】
∵菱形ABCD中,AB=4,AD的垂直平分线交AC于点N,
∴CD=AB=4,AN=DN,
∵△CDN的周长=CN+CD+DN=10,
∴CN+4+AN=10,
∴CN+AN=AC=6.
故答案为6.
11、1
【解析】
由平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据,,,,的和,然后再用平均数的定义求新数据的平均数.
【详解】
一组数据,,,,的平均数是2,有,那么另一组数据,,,,的平均数是.
故答案为1.
本题考查的是样本平均数的求法及运用,解题的关键是掌握平均数公式:.
12、2.1
【解析】
根据勾股定理求出AB,根据直角三角形斜边上中线性质得出DE=AB,代入求出即可.
【详解】
.解:∵BD⊥CA,
∴∠ADB=90°,
在Rt△ADB中,由勾股定理得:AB= ==1,
∵E是AB的中点,∠ADB=90°,
∴DE=AB=2.1,
故答案为:2.1.
本题考查了勾股定理和直角三角形斜边上中线的性质,能求出AB的长和得出DE=AB是解此题的关键.
13、1
【解析】
根据等腰三角形的性质和三角形的内角和即可得到结论.
【详解】
解:一个等腰三角形的顶角等于,
它的底角,
故答案为:1.
本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)或;(3)存在,
【解析】
(1)利用待定系数法可求直线AB解析式;
(2)分两种情况讨论,利用全等三角形的性质可求解;
(3)先求点D坐标,由勾股定理可得DN=AM=t,可证四边形AMDN是平行四边形,即当AM=AN时,四边形AMDN为菱形,列式可求t的值.
【详解】
(1)设直线AB解析式为:y=mx+n,
根据题意可得:,
∴,
∴直线AB解析式为;
(2)若点C在直线AB右侧,
如图1,过点A作AD⊥AB,交BC的延长线于点D,过点D作DE⊥AC于E,
∵∠ABC=45°,AD⊥AB,
∴∠ADB=∠ABC=45°,
∴AD=AB,
∵∠BAO+∠DAC=90°,且∠BAO+∠ABO=90°,
∴∠ABO=∠DAC,AB=AD,∠AOB=∠AED=90,
∴△ABO≌△DAE(AAS),
∴AO=DE=3,BO=AE=4,
∴OE=1,
∴点D(1,-3),
∵直线y=kx+b过点D(1,-3),B(0,4).
∴,
∴k=-7,
若点C在点A右侧时,如图2,
同理可得,
综上所述:k=-7或.
(3)设直线DN的解析式为:y=x+n,且过点N(-0.6t,0),
∴0=-0.8t+n,
∴n=0.8t,
∴点D坐标(0,0.8t),且过点N(-0.6t,0),
∴OD=0.8t,ON=0.6t,
∴DN==1,
∴DN=AM=1,且DN∥AM,
∴四边形AMDN为平行四边形,
当AN=AM时,四边形AMDN为菱形,
∵AN=AM,
∴t=3-0.6t,
∴t=,
∴当t=时,四边形AMDN为菱形.
本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,菱形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.
15、(1)见解析;(2)当△ABC中的∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC中的AB=AC时,四边形ADEF是菱形;(4)当∠BAC=150°且AB=AC时,四边形ADEF是正方形;(5)当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,即以A、D、E、F为顶点的四边形不存在.
【解析】
(1)通过证明△DBE≌△ABC,得到DE=AC,利用等边三角形ACF,可得DE=AF,
同理证明与全等,利用等边三角形,得AD=EF,可得答案.(2)利用平行四边形ADEF是矩形,结合已知条件等边三角形得到即可.(3)利用平行四边形ADEF是菱形形,结合已知条件等边三角形得到即可.(4)结合(2)(3)问可得答案.(5)当四边形ADEF不存在时,即出现三个顶点在一条直线上,因此可得答案。
【详解】
解:(1) ∵△BCE、△ABD是等边三角形,
∴∠DBA=∠EBC=60°,AB=BD,BE=BC,
∴∠DBE=∠ABC,
∴△DBE≌△ABC,
∴DE=AC,
又△ACF是等边三角形, ∴AC=AF,
∴DE=AF,
同理可证:AD=EF,
∴四边形ADEF是平行四边形.
(2) 假设四边形ADEF是矩形, 则∠DAF=90°,
又∠DAB=∠FAC=60°, ∠DAB+∠FAC+∠DAF+∠BAC=360°
∴∠BAC=150°.
因此当△ABC中的∠BAC=150°时,四边形ADEF是矩形.
(3)假设四边形ADEF是菱形, 则AD=DE=EF=AF
∵AB=AD,AC=AF,∴AB=AC
因此当△ABC中的AB=AC时,四边形ADEF是菱形.
(4)结合(2)(3)问可知当∠BAC=150°且AB=AC时,
四边形ADEF是正方形.
(5)由图知道:∠DAB+∠FAC+∠DAF+∠BAC=360°
∴当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,
即以A、D、E、F为顶点的四边形不存在.
本题考查了平行四边形的判定,菱形,矩形,正方形的性质与判定,全等三角形的判定,等边三角形的性质等知识点的应用,是一道综合性比较强的题目,掌握相关的知识点是解题的关键.
16、(1)见解析;(2)见解析;
【解析】
(1)利用平行线的性质证明,即可解答
(2)连接,根据题意得出,再由(1)得出,得到是的中位线,即可解答
【详解】
(1)证明:.
是的中点,.
又,
(ASA).
.
又,
四边形是平行四边形.
(2)证明:如图1,连接,
图1
是的中点,
.
.
.
由(1)知,
,又由(1)知,
.
,
是的中位线.
.
,
.
此题考查等腰三角形的性质,平行线的性质,全等三角形的判定与性质,解题关键在于作辅助线
17、探究:和全等,理由见解析;拓展:.
【解析】
探究:△ADE和△DBF全等,利用菱形的性质首先证明三角形ABD为等边三角形,再利用全等三角形的判定方法即可证明△ADE≌△DBF;
拓展:因为点O在AD的垂直平分线上,所以OA=OD,再通过证明△ADE≌△DBF,利用全等三角形的性质即可求出∠ADE的度数.
【详解】
探究:和全等.
四边形ABCD是菱形,
.
,
.
为等边三角形
.
,
≌;
拓展:
点O在AD的垂直平分线上,
.
.
,,
≌
.
本题考核知识点:菱形性质,等边三角形性质,全等三角形判定和性质等.知识点多,但不难. 解题关键点:熟记相关知识点.
18、见解析.
【解析】
利用基本作图,作∠ABD的平分线交AD于E,则E到AB的距离等于ED.
【详解】
如图,点E为所作.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据比例的性质即可求解.
【详解】
∵,∴x=3y,∴原式==1.
故答案为:1.
本题考查了比例的性质,关键是得出x=3y.
20、
【解析】
首先根据a+b=−8,和ab=10确定a和b的符号,然后对根式进行化简,然后代入求解即可.
【详解】
解:
原式=
则原式=
故答案为:.
本题考查了根式的化简求值,正确确定a和b的符号是解决本题的关键.
21、15
【解析】
解:设两地的实际距离为xcm,
根据题意得:,
解得:x=1500000,
∵1500000cm=15km,
∴两地的实际距离15km.
22、1
【解析】
由平行四边形的性质得出AB=CD,AD=BC,OB=OD=BD=5,得出BC+CD=18,证出OE是△BCD的中位线,DE=CD,由三角形中位线定理得出OE=BC,△DOE的周长=OD+OE+DE=OD+(BC+CD),即可得出结果.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,OB=OD=BD=5,
∵平行四边形ABCD的周长为36,
∴BC+CD=18,
∵点E是CD的中点,
∴OE是△BCD的中位线,DE=CD,
∴OE=BC,
∴△DOE的周长=OD+OE+DE=OD+(BC+CD)=5+9=1;
故答案为:1.
本题考查平行四边形的性质、三角形中位线的性质,熟练运用平行四边形和三角形中位线的性质定理是解题的关键.
23、2.1
【解析】
根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.
【详解】
连结AP,
在△ABC中,AB=6,AC=8,BC=10,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴四边形AFPE是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=AP,
根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,
∴当AP⊥BC时,△ABP∽△CAB,
∴AP:AC=AB:BC,
∴AP:8=6:10,
∴AP最短时,AP=1.8,
∴当AM最短时,AM=AP÷2=2.1.
故答案为2.1
解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相平分的四边形是平行四边形得出结论.
【详解】
解:证明:连接BD,交AC于点O,如图所示,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OA﹣AE=OC﹣CF,
即OE=OF,
∴四边形DEBF是平行四边形.
本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
25、,.
【解析】
分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,最后将除法改成乘法进行约分化简,最后选择a的值时,不能取a=2和a=±1.
详解:原式=,
当a=1时,原式=.
点睛:本题主要考查的是分式的化简求值问题,属于基础题型.学会因式分解是解决分式问题的基本要求.
26、(1)每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资;(2)公司有3种派车方案,安排3辆甲车,7辆乙车时,所用的燃油费最少,最低燃油费是1元.
【解析】
(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,根据“2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设该公司安排m辆甲车,则安排(10−m)辆乙车,根据10辆车的总运载量不少于234吨,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合m为正整数即可得出各派车方案,设总燃油费为w元,根据总燃油费=每辆车的燃油费×派车辆数,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.
【详解】
解:(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,
依题意得:,
解得:,
答:每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资;
(2)设该公司安排m辆甲车,则安排(10−m)辆乙车,
依题意得:18m+26(10−m)≥234,
解得:m≤,
又∵m为正整数,
∴m可以为1,2,3,
∴公司有3种派车方案,方案1:安排1辆甲车,9辆乙车;方案2:安排2辆甲车,8辆乙车;方案3:安排3辆甲车,7辆乙车;
设总燃油费为w元,则w=2000m+2600(10−m)=−600m+26000,
∵k=−600,
∴w随m的增大而减小,
∴当m=3时,w取得最小值,最小值=−600×3+26000=1(元),
答:公司有3种派车方案,安排3辆甲车,7辆乙车时,所用的燃油费最少,最低燃油费是1.
本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.
题号
一
二
三
四
五
总分
得分
批阅人
尺码/厘米
23
23.5
24
24.5
25
25.5
26
销售量/双
5
10
22
39
56
43
25
2024-2025学年湖北省十堰市张湾区九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年湖北省十堰市张湾区九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省黄冈中学九年级数学第一学期开学质量检测试题【含答案】: 这是一份2024-2025学年湖北省黄冈中学九年级数学第一学期开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省广水市城郊街道办事处中学九年级数学第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年湖北省广水市城郊街道办事处中学九年级数学第一学期开学检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。