2024-2025学年湖北省天门市江汉学校九上数学开学学业水平测试模拟试题【含答案】
展开
这是一份2024-2025学年湖北省天门市江汉学校九上数学开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是( )
A.a2+b2=c2B.∠A+∠B=90°
C.a=3,b=4,c=5D.∠A:∠B:∠C=3:4:5
2、(4分)使式子有意义的条件是( )
A.x≥4B.x=4C.x≤4D.x≠4
3、(4分)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,然后再按演讲内容占50%、演讲能力占40% 、演讲效果占10%的比例计算选手的综合成绩.某选手的演讲内容、演讲能力、演讲效果成绩依次为85,95,95,则该选手的综合成绩为 ( )
A.92B.88C.90D.95
4、(4分)如图,若一次函数的图象与x轴的交于点,与y轴交于点下列结论:①关于x的方程的解为;②随x的增大而减小;③关于x的方程的解为;④关于x的不等式的解为其中所有正确的为
A.①②③B.①③C.①②④D.②④
5、(4分)某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为( )
A.x(27﹣3x)=75B.x(3x﹣27)=75
C.x(30﹣3x)=75D.x(3x﹣30)=75
6、(4分)用四张全等的直角三角形纸片拼成了如图所示的图形,该图形( )
A.既是轴对称图形也是中心对称图形
B.是轴对称图形但并不是中心对称图形
C.是中心对称图形但并不是轴对称图形
D.既不是轴对称图形也不是中心对称图形
7、(4分)如果多项式是一个完全平方式,那么的值为
A.B.C.D.
8、(4分)在平面直角坐标系中,点P(﹣3,2)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,等边三角形ABC的顶点B,C的坐标分别为(1,0),(3,0),过坐标原点O的一条直线分别与边AB,AC交于点M,N,若OM=MN,则点M的坐标为______________.
10、(4分)直线过第_________象限,且随的增大而_________.
11、(4分)当x=4时,二次根式的值为______.
12、(4分)因式分解:x2+6x=_____.
13、(4分)某垃圾处理厂日处理垃圾吨,实施垃圾分类后,每小时垃圾的处理量比原来提高,这样日处理同样多的垃圾就少用.若设实施垃圾分类前每小时垃圾的处理量为吨,则可列方程____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,边长为的大正方形中有一个边长为的小正方形(),图2是由图1中阴影部分拼成的一个长方形.
(1)观察图1、图2,当用不同的方法表示图形中阴影部分的面积时,可以获得一个因式分解公式,则这个公式是_______;
(2)如果大正方形的边长比小正方形的边长多3,它们的面积相差57,试利用(1)中的公式,求,的值.
15、(8分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.
16、(8分)如图,城气象台测得台风中心在城正西方向的处,以每小时的速度向南偏东的方向移动,距台风中心的范围内是受台风影响的区域.
(1)求城与台风中心之间的最小距离;(2)求城受台风影响的时间有多长?
17、(10分)如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.
(1)写出y与t之间的函数关系式;
(2)通话2分钟应付通话费多少元?通话7分钟呢?
18、(10分)如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.
(1)求反比例函数的解析式;
(2)过点作轴的平行线,点在直线上运动,点在轴上运动.
①若是以为直角顶点的等腰直角三角形,求的面积;
②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲,乙两人进行飞镖比赛,每人各投1次,甲的成绩(单位:环)为:9,8,9,1,10,1.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是______.(填“甲”或“乙”)
20、(4分)如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的值是__________.
21、(4分)小丽计算数据方差时,使用公式S2=,则公式中=__.
22、(4分)函数y=kx的图象经过点(1,3),则实数k=_____.
23、(4分)若一次函数的函数值随的增大而增大,则的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,AD是BC边上的中线,点E是AD的中点,过点A作交BE的延长线于F,BF交AC于G,连接CF.
求证:≌;
若,试判断四边形ADCF的形状,并证明你的结论;
求证:.
25、(10分)已知:如图,一次函数y=kx+3的图象与反比例函数y= (x>0)的图象交于点P.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C.点D,且S△DBP=27,
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式
26、(12分)在平面直角坐标系中,三个顶点的坐标分别是,,.
(1)将绕点旋转,请画出旋转后对应的;
(2)将沿着某个方向平移一定的距离后得到,已知点的对应点的坐标为,请画出平移后的;
(3)若与关于某一点中心对称,则对称中心的坐标为_____.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分析:利用直角三角形的定义和勾股定理的逆定理逐项判断即可.
详解:A. a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;
B. ∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;
C. 52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;
D. ∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形;
故选D.
点睛:此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三个内角中有一个是直角的情况下,才能判定三角形是直角三角形.
2、A
【解析】
根据二次根式有意义的条件(大于或等于0)即可求出x的范围.
【详解】
∵有意义,
∴x-4≥0,
∴x≥4.
故选A.
考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件(被开方数大于或等于0).
3、C
【解析】
分析:根据加权平均数公式计算即可,若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数,此题w1+w2+w3+…+wn=50%+40% +10%=1.
详解:由题意得,
85×50%+95×40%+95×10%=90(分).
点睛:本题考查了加权平均数的计算,熟练掌握加权平均数的计算公式是解答本题的关键.
4、A
【解析】
根据一次函数的性质进行分析即可. 一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-,0); 当k>0时,直线必通过一、三象限,y随x的增大而增大;当k0时,关于x的不等式的解为
所以,正确结论是:①②③.
故选A.
本题考核知识点:一次函数的性质. 解题关键点:结合函数的图象分析问题.
5、C
【解析】
设矩形宽为xm,根据可建墙体总长可得出矩形的长为(30-3x)m,再根据矩形的面积公式,即可列出关于x的一元二次方程,此题得解
【详解】
解:设矩形宽为xm,则矩形的长为(30﹣3x)m,
根据题意得:x(30﹣3x)=1.
故选:C.
本题考查的是一元二次方程,熟练掌握一元二次方程是解题的关键.
6、C
【解析】
根据轴对称图形和中心对称图形的概念进行判断即可。
【详解】
解:根据轴对称图形与中心对称图形概念,看图分析得:它是中心对称图形,但不是轴对称图形.
故选C.
本题考查了轴对称图形和中心对称图形的概念:把一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴;一个图形绕着某个点旋转180°,能够和原来的图形重合,则为中心对称图形.
7、D
【解析】
分析:完全平方差公式是指:,根据公式即可得出答案.
详解:根据完全平方公式可得:-m=±6,则m=±6,故选D.
点睛:本题主要考查的是完全平方公式,属于基础题型.明白完全平方公式的形式是解题的关键.
8、B
【解析】
根据各象限的点的坐标的符号特征判断即可.
【详解】
∵-3<0,2>0,
∴点P(﹣3,2)在第二象限,
故选:B.
本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (,)
【解析】
∵B(1,0),C(3,0),
∴OB=1,OC=3,
∴BC=2,
过点N作EN∥OC交AB于E,过点A作AD⊥BC于D,NF⊥BC于F,
∴∠ENM=∠BOM,
∵OM=NM,∠EMN=∠BMO,
∴△ENM≌△BOM,
∴EN=OB=1,
∵△ABC是正三角形,
∴AD=,BD=BC=1,
∴OD=2,
∴A(2,),
∴△AEN也是正三角形,
∴AN=EN=1,
∴AN=CN,
∴N,
∴M(,)
故答案为(,)
10、【解析】
根据一次函数的性质解答即可.
【详解】
解:∵-2<0,1>0,
∴直线过第一、二、四象限,且随的增大而减小,
故答案为:一、二、四;减小.
本题考查了一次函数的性质,熟知一次函数、为常数,是一条直线,当,图象经过第一、三象限,随的增大而增大;当,图象经过第二、四象限,随的增大而减小是解答此题的关键.
11、0
【解析】
直接将,代入二次根式解答即可.
【详解】
解:把x=4代入二次根式=0,
故答案为:0
此题主要考查了二次根式的定义,直接将代入求出,利用二次根式的性质直接开平方是解决问题的关键.
12、x(x+6)
【解析】
根据提公因式法,可得答案.
【详解】
原式=x(6+x),
故答案为:x(x+6).
本题考查了因式分解,利用提公因式法是解题关键.
13、
【解析】
设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾吨,根据“原工作时间−3=后来的工作时间”列分式方程求解可得.
【详解】
解:设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾,
根据题意得.
故答案为.
本题主要考查分式方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程求解.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)a=11,b=1
【解析】
(1)根据两个图形的面积即可列出等式;
(2)根据题意得到,由面积相差57得到,解a与b组成的方程组求解即可.
【详解】
解:(1)图1阴影面积=,图2的阴影面积=(a+b)(a-b),
∴,
故答案为:;
(2)由题意可得:.
∵.
∴.
∴解得
∴,的值分别是11,1.
此题考查完全平方公式与几何图形的关系,二元一次方程组的实际应用.
15、证明见解析.
【解析】
利用三角形中位线定理判定OE∥BC,且OE=BC.结合已知条件CF=BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.
【详解】
∵四边形ABCD是平行四边形,∴点O是BD的中点.
又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=BC.
又∵CF=BC,∴OE=CF.
又∵点F在BC的延长线上,∴OE∥CF,
∴四边形OCFE是平行四边形.
本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键.
16、(1)城与台风中心之间的最小距离是;(2)城遭受这次台风影响的时间为小时.
【解析】
(1)城与台风中心之间的最小距离即为点A到OB的垂线段的长,作,根据直角三角形中所对的直角边等于斜边的一半求解即可;
(2)设上点,千米,则还有一点,有千米,则在DG范围内,城遭受这次台风影响,所以求出DG长,除以台风移动的速度即为时间.
【详解】
解:作
在中,
,则
答:城与台风中心之间的最小距离是
设上点,千米,则还有一点,有
千米
是等腰三角形,
是的垂直平分线,
在中,千米,千米
由勾股定理得,(千米)
千米,遭受台风影响的时间是:(小时)
答:城遭受这次台风影响个时间为小时
本题考查了含直角三角形的性质、等腰三角形的性质及勾股定理,正确理解题意是解题的关键.
17、(1)当03时,y=t-0.6;(2)2.4元;6.4元
【解析】
试题分析:(1)由图,当时,y为恒值;当时,图象过点(3,2.4)、(5,4.4),可根据待定系数法求函数关系式;
(2)因为,所以根据AB段对应的函数即可得到结果;因为7>3,所以根据BC段对应的函数关系式即可得结果.
(1)当时,;
当时,设函数关系式为,
∵图象过点(3,2.4)、(5,4.4),
,解得,
y与t之间的函数关系式为;
(2)当时,元,
当时,元.
考点:本题考查的是一次函数的应用
点评:此类题目的解决需仔细分析函数图象,从中找寻信息,利用待定系数法求出函数解析式,从而解决问题.
18、(1);(2)①或.②1或2.
【解析】
(1)设的坐标分别为,根据三角形的面积,构建方程即可解决问题.
(2)①分两种情形画出图形:当点P在线段BM上,当点P在线段BM的延长线上时,分别利用全等三角形的性质求解即可.
②当点Q是等腰三角形的直角顶点时,分两种情形分别求解即可.
【详解】
解:(1))∵四边形OACD是正方形,边长为3,
∴点B的纵坐标为3,点E的横坐标为3,
∵反比例函数的图象交AC,CD于点B,E,
设的坐标分别为.
∵S△OBE=4,
可得,.
解得,,(舍).
所以,反比例函数的解析式为.
(2))①如图1中,设直线m交OD于M.
由(1)可知B(1,3),AB=1,BC=2,
当PC=PQ,∠CPQ=90°时,
∵∠CBP=∠PMQ=∠CPQ=90°,
∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,
∴∠PCB=∠MPQ,∵PC=PQ,
∴△CBP≌△PMQ(AAS),
∴BC=PM=2,PB=MQ=1,
∴PC=PQ=
∴S△PCQ=
如图2中,当PQ=PC,∠CPQ=90°,
同法可得△CBP≌△PMQ(AAS),
∴PM=BC=2,OM=PB=1,
∴PC=PQ=,
∴S△PCQ=.
所以,的面积为或.
②当点Q是等腰三角形的直角顶点时,同法可得CQ=PQ=,此时S△PCQ=1.
或CQ′=PQ′=,可得S△P′CQ′=2,
不存在点C为等腰三角形的直角顶点,
综上所述,△CPQ的面积除了“①”中求得的结果外,还可以是1或2.
故答案为1或2.
本题属于反比例函数综合题,考查了正方形的性质,反比例函数的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、甲.
【解析】
先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.
【详解】
甲的平均数,
所以甲的方差,
因为甲的方差比乙的方差小,
所以甲的成绩比较稳定.
故答案为:甲.
本题考查方差的定义:一般地设n个数据,,,…,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
20、1
【解析】
过点D作DE⊥BC于E,根据角平分线的作法可知CD平分∠ACB,然后根据角平分线的性质可得DE=AD=3,然后根据三角形的面积公式求面积即可.
【详解】
解:过点D作DE⊥BC于E
由题意可知:CD平分∠ACB
∵
∴DE=AD=3
∵
∴=
故答案为:1.
此题考查的是用尺规作图作角平分线和角平分线的性质,掌握角平分线的作法和角平分线的性质是解决此题的关键.
21、1
【解析】
分析:根据题目中的式子,可以得到的值,从而可以解答本题.
详解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.
故答案为1.
点睛:本题考查了方差、平均数,解答本题的关键是明确题意,求出相应的平均数.
22、3
【解析】
试题分析:直接把点(1,3)代入y=kx,然后求出k即可.
解:把点(1,3)代入y=kx,
解得:k=3,
故答案为3
【点评】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.
23、k>2
【解析】
试题分析:本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.
【详解】
根据题意可得:k-2>0,解得:k>2.
考点:一次函数的性质;一次函数的定义
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)四边形ADCF是菱形,理由详见解析;(3)详见解析
【解析】
由“AAS”可证≌;
由全等三角形的性质可得,可证四边形ADCF是平行四边形,由直角三角形的性质可得,可证四边形ADCF是菱形;
通过证明∽,可得,即可得结论.
【详解】
证明:,
,
在和中,
≌;
解:四边形ADCF是菱形,
理由如下:≌,
,
,
,又,
四边形ADCF是平行四边形,
,AD是BC边上的中线,
,
四边形ADCF是菱形;
∽
本题考查四边形综合题,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.
25、(1)(0,3);(2)y=−x+3,y=−
【解析】
(1)根据一次函数与y轴的交点,从而得出D点的坐标.
(2)根据在Rt△COD和Rt△CAP中,,OD=3,再根据S△DBP=27,从而得
【详解】
(1)∵一次函数y=kx+3与y轴相交,
∴令x=0,解得y=3,得D的坐标为(0,3);
(2)∵OD⊥OA,AP⊥OA,
∠DCO=∠ACP,
∠DOC=∠CAP=90°,
∴Rt△COD∽Rt△CAP,则,OD=3,
∴AP=OB=6,
∴DB=OD+OB=9,
在Rt△DBP中,∴ =27,
即 ,
∴BP=6,故P(6,−6),
把P坐标代入y=kx+3,得到k=− ,
则一次函数的解析式为:y=−x+3;
把P坐标代入反比例函数解析式得m=−36,
则反比例解析式为:y=− ;
此题考查反比例函数与一次函数的交点问题,解题关键在于根据一次函数与y轴的交点进行求解
26、(1)见解析;(2)见解析;(3)
【解析】
(1)延长BC到B1使B1C=BC,延长AC到A1使A1C=AC,从而得到△A1B1C1;
(2)利用点A1和A2的坐标特征得到平移的规律,然后描点得到△A2B2C2;
(3)利用关于原点对称的点的坐标特征进行判断.
【详解】
(1)△A1B1C1如图所示;
(2)△A2B2C2,如图所示;
(3)∵,,,,,
∴与关于原点对,对称中心坐标为,
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024-2025学年湖北省荆州市洪湖市数学九上开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省鄂州鄂城区七校联考九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广东省江门市恩平市九上数学开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。