还剩16页未读,
继续阅读
鲁教版八年级数学上册专项素养综合练(七)利用旋转的性质解决线段和角的问题(1)课件
展开
这是一份鲁教版八年级数学上册专项素养综合练(七)利用旋转的性质解决线段和角的问题(1)课件,共24页。
专项素养综合练(七)利用旋转的性质解决线段和角的问题1.如图,将△ABC绕点B逆时针旋转得到△DBE,点E落在AB上,DE的延长线与AC相交于点F,连接DA,BF,若∠ABC=60°,BF=AF.(1)求证:△ADF≌△BDF.(2)若AF=2,求DF的长.类型一 求线段的长度问题解析 (1)证明:∵将△ABC绕点B逆时针旋转得到△DBE,∴△ABC≌△DBE,∴AB=DB,∠DBE=∠ABC=60°,∠DEB=∠C,∴△ABD是等边三角形,∴AD=BD,在△ADF与△BDF中, ∴△ADF≌△BDF(SSS).(2)∵△ABD是等边三角形,∴∠ADB=60°,∵△ADF≌△BDF,∴∠ADF=∠BDF= ∠ADB=30°,∵AD=BD,AF=BF,∴DF⊥AB,∴∠DEB=∠C=90°,∴∠BAC=30°,∵AF=BF,∴∠EBF=∠BAC=30°,∴∠DBF=∠DBA+∠ABF=60°+30°=90°,∵BF=AF=2,∠BDF=30°,∴DF=2BF=4.2.(2024云南昭通期末)正方形ABCD的边长为5,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°得到△DCM.(1)求证:EF=CF+AE.(2)若AE=2,求EF的长.解析 (1)证明:∵将△DAE绕点D逆时针旋转90°得到△DCM,∴∠DCM=∠A=90°,∠ADE=∠CDM,AE=CM,DE=DM,∴∠FCD+∠DCM=180°,∴F、C、M三点共线,∵∠EDM=∠EDC+∠CDM=∠EDC+∠ADE=∠ADC=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中, ∴△DEF≌△DMF(SAS),∴EF=MF,∴EF=MF=CF+CM=CF+AE.(2)设EF=MF=x,∵AE=CM=2,AB=BC=5,∴BM=BC+CM=5+2=7,EB=AB-AE=5-2=3,∴BF=BM-MF=7-x,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即32+(7-x)2=x2,解得x= ,则EF= .类型二 求角的度数问题3.(2024江苏苏州姑苏期末)如图,已知△ABC中,∠B=50°,∠C=60°.将△ABC绕点A按逆时针方向旋转得到△ADE,AC与DE交于点F.(1)若AC⊥DE,求∠DAC的度数.(2)若AD平分∠BAC,求∠CFE的度数.解析 (1)∵将△ABC绕点A按逆时针方向旋转得到△ADE,∴∠B=∠D=50°,∵AC⊥DE,∴∠AFD=90°,∴∠DAC=90°-50°=40°.(2)∵∠B=50°,∠C=60°,∴∠BAC=70°,∵AD平分∠BAC,∴∠BAD=∠CAD=35°,∴∠AFE=∠D+∠CAD=85°,∴∠CFE=180°-85°=95°.4.(2023山东滨州滨城期末)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°得到△CBF,连接EF,EF的长为2.(1)求BF的长.(2)若AE=1,CE= ,求∠AEB的度数.解析 (1)∵将△ABE绕点B顺时针旋转90°得到△CBF,∴BE=BF,∠EBF=90°,∴△BEF为等腰直角三角形,设BE=BF=x,则x2+x2=22,解得x= .∴BF的长为 .(2)∵将△ABE绕点B顺时针旋转90°得到△CBF,∴∠AEB=∠BFC,AE=CF=1,在△CEF中,EF=2,CF=1,EC= ,∴CF2+EF2=12+22=5,CE2=5,∴CF2+EF2=CE2,∴△CEF为直角三角形,且∠EFC=90°,∵∠EBF=90°,BE=BF,∴∠BFE=45°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.类型三 证明线段之间的数量关系5.(半角模型)如图,已知△ABC中,∠BAC=90°,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转得到△ACD'.(1)当∠DAE=45°时,求证:DE=D'E.(2)在(1)的条件下,猜想:BD2、DE2、CE2有怎样的数量关系,请说明理由.解析 (1)证明:∵△ABD绕点A旋转得到△ACD',∴AD=AD',∠DAD'=∠BAC=90°,∵∠DAE=45°,∴∠EAD'=∠DAD'-∠DAE=90°-45°=45°,∴∠EAD'=∠DAE,在△AED与△AED'中, ∴△AED≌△AED'(SAS),∴DE=D'E.(2)BD2+CE2=DE2.理由如下:由(1)知ED=ED',在△ABC中,AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵△ABD绕点A旋转得到△ACD',∴BD=CD',∠B=∠ACD'=45°,∴∠BCD'=∠ACB+∠ACD'=45°+45°=90°,在Rt△CD'E中,D'C2+CE2=D'E2,∴BD2+CE2=DE2.类型四 证明线段之间的位置关系6.(2023辽宁抚顺新抚期中)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕点A逆时针旋转50°得到△AB'C',连接CC'.(1)求证:AC∥C'B'.(2)求∠BCC'的度数.解析 (1)证明:∵将△ABC绕点A逆时针旋转50°得到△AB'C',∴∠BAB'=50°,∠AB'C'=∠ABC=30°.∵∠CAB=20°,∴∠B'AC=∠BAB'-∠CAB=30°.∴∠AB'C'=∠B'AC.∴AC∥C'B'.(2)根据旋转的性质得∠CAC'=50°,AC=AC',∴∠ACC'= ×(180°-50°)=65°,在△ABC中,∠CAB=20°,∠ABC=30°,∴∠ACB=130°,∴∠BCC'=360°-∠ACB-∠ACC'=165°.7.(2022北京西城期中)如图,等腰三角形ABC中,BA=BC,∠ABC=α.作CD⊥AB于点D,将线段BD绕点B逆时针旋转α后得到线段BE,连接AE.求证:BE⊥AE. 证明 ∵将线段BD绕点B逆时针旋转α后得到线段BE,∴BE=BD,∠ABE=α,∴∠ABC=∠ABE,在△ABE和△CBD中, ∴△ABE≌△CBD(SAS),∴∠AEB=∠CDB=90°,∴AE⊥BE.
专项素养综合练(七)利用旋转的性质解决线段和角的问题1.如图,将△ABC绕点B逆时针旋转得到△DBE,点E落在AB上,DE的延长线与AC相交于点F,连接DA,BF,若∠ABC=60°,BF=AF.(1)求证:△ADF≌△BDF.(2)若AF=2,求DF的长.类型一 求线段的长度问题解析 (1)证明:∵将△ABC绕点B逆时针旋转得到△DBE,∴△ABC≌△DBE,∴AB=DB,∠DBE=∠ABC=60°,∠DEB=∠C,∴△ABD是等边三角形,∴AD=BD,在△ADF与△BDF中, ∴△ADF≌△BDF(SSS).(2)∵△ABD是等边三角形,∴∠ADB=60°,∵△ADF≌△BDF,∴∠ADF=∠BDF= ∠ADB=30°,∵AD=BD,AF=BF,∴DF⊥AB,∴∠DEB=∠C=90°,∴∠BAC=30°,∵AF=BF,∴∠EBF=∠BAC=30°,∴∠DBF=∠DBA+∠ABF=60°+30°=90°,∵BF=AF=2,∠BDF=30°,∴DF=2BF=4.2.(2024云南昭通期末)正方形ABCD的边长为5,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°得到△DCM.(1)求证:EF=CF+AE.(2)若AE=2,求EF的长.解析 (1)证明:∵将△DAE绕点D逆时针旋转90°得到△DCM,∴∠DCM=∠A=90°,∠ADE=∠CDM,AE=CM,DE=DM,∴∠FCD+∠DCM=180°,∴F、C、M三点共线,∵∠EDM=∠EDC+∠CDM=∠EDC+∠ADE=∠ADC=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中, ∴△DEF≌△DMF(SAS),∴EF=MF,∴EF=MF=CF+CM=CF+AE.(2)设EF=MF=x,∵AE=CM=2,AB=BC=5,∴BM=BC+CM=5+2=7,EB=AB-AE=5-2=3,∴BF=BM-MF=7-x,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即32+(7-x)2=x2,解得x= ,则EF= .类型二 求角的度数问题3.(2024江苏苏州姑苏期末)如图,已知△ABC中,∠B=50°,∠C=60°.将△ABC绕点A按逆时针方向旋转得到△ADE,AC与DE交于点F.(1)若AC⊥DE,求∠DAC的度数.(2)若AD平分∠BAC,求∠CFE的度数.解析 (1)∵将△ABC绕点A按逆时针方向旋转得到△ADE,∴∠B=∠D=50°,∵AC⊥DE,∴∠AFD=90°,∴∠DAC=90°-50°=40°.(2)∵∠B=50°,∠C=60°,∴∠BAC=70°,∵AD平分∠BAC,∴∠BAD=∠CAD=35°,∴∠AFE=∠D+∠CAD=85°,∴∠CFE=180°-85°=95°.4.(2023山东滨州滨城期末)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°得到△CBF,连接EF,EF的长为2.(1)求BF的长.(2)若AE=1,CE= ,求∠AEB的度数.解析 (1)∵将△ABE绕点B顺时针旋转90°得到△CBF,∴BE=BF,∠EBF=90°,∴△BEF为等腰直角三角形,设BE=BF=x,则x2+x2=22,解得x= .∴BF的长为 .(2)∵将△ABE绕点B顺时针旋转90°得到△CBF,∴∠AEB=∠BFC,AE=CF=1,在△CEF中,EF=2,CF=1,EC= ,∴CF2+EF2=12+22=5,CE2=5,∴CF2+EF2=CE2,∴△CEF为直角三角形,且∠EFC=90°,∵∠EBF=90°,BE=BF,∴∠BFE=45°,∴∠BFC=∠BFE+∠CFE=135°,∴∠AEB=135°.类型三 证明线段之间的数量关系5.(半角模型)如图,已知△ABC中,∠BAC=90°,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转得到△ACD'.(1)当∠DAE=45°时,求证:DE=D'E.(2)在(1)的条件下,猜想:BD2、DE2、CE2有怎样的数量关系,请说明理由.解析 (1)证明:∵△ABD绕点A旋转得到△ACD',∴AD=AD',∠DAD'=∠BAC=90°,∵∠DAE=45°,∴∠EAD'=∠DAD'-∠DAE=90°-45°=45°,∴∠EAD'=∠DAE,在△AED与△AED'中, ∴△AED≌△AED'(SAS),∴DE=D'E.(2)BD2+CE2=DE2.理由如下:由(1)知ED=ED',在△ABC中,AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵△ABD绕点A旋转得到△ACD',∴BD=CD',∠B=∠ACD'=45°,∴∠BCD'=∠ACB+∠ACD'=45°+45°=90°,在Rt△CD'E中,D'C2+CE2=D'E2,∴BD2+CE2=DE2.类型四 证明线段之间的位置关系6.(2023辽宁抚顺新抚期中)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕点A逆时针旋转50°得到△AB'C',连接CC'.(1)求证:AC∥C'B'.(2)求∠BCC'的度数.解析 (1)证明:∵将△ABC绕点A逆时针旋转50°得到△AB'C',∴∠BAB'=50°,∠AB'C'=∠ABC=30°.∵∠CAB=20°,∴∠B'AC=∠BAB'-∠CAB=30°.∴∠AB'C'=∠B'AC.∴AC∥C'B'.(2)根据旋转的性质得∠CAC'=50°,AC=AC',∴∠ACC'= ×(180°-50°)=65°,在△ABC中,∠CAB=20°,∠ABC=30°,∴∠ACB=130°,∴∠BCC'=360°-∠ACB-∠ACC'=165°.7.(2022北京西城期中)如图,等腰三角形ABC中,BA=BC,∠ABC=α.作CD⊥AB于点D,将线段BD绕点B逆时针旋转α后得到线段BE,连接AE.求证:BE⊥AE. 证明 ∵将线段BD绕点B逆时针旋转α后得到线段BE,∴BE=BD,∠ABE=α,∴∠ABC=∠ABE,在△ABE和△CBD中, ∴△ABE≌△CBD(SAS),∴∠AEB=∠CDB=90°,∴AE⊥BE.
相关资料
更多