年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年湖北省武汉二中学九上数学开学联考模拟试题【含答案】

    2024-2025学年湖北省武汉二中学九上数学开学联考模拟试题【含答案】第1页
    2024-2025学年湖北省武汉二中学九上数学开学联考模拟试题【含答案】第2页
    2024-2025学年湖北省武汉二中学九上数学开学联考模拟试题【含答案】第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年湖北省武汉二中学九上数学开学联考模拟试题【含答案】

    展开

    这是一份2024-2025学年湖北省武汉二中学九上数学开学联考模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若分式的值为0,则x的值等于
    A.0B.3C.D.
    2、(4分)下列数学符号中,属于中心对称图形的是( )
    A.B.C.D.
    3、(4分)将一个边长为4cn的正方形与一个长,宽分別为8cm,2cm的矩形重叠放在一起,在下列四个图形中,重叠部分的面积最大的是( )
    A. B.C.D.
    4、(4分)如图,数轴上的点A所表示的数是( )
    A.B.C.D.
    5、(4分)某地区连续10天的最高气温统计如下表,则该地区这10天最高气温的中位数是( )
    A.B.C.D.
    6、(4分)如果a>b,下列各式中正确的是( )
    A.ac>bcB.a﹣3>b﹣3C.﹣2a>﹣2bD.
    7、(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB,若AD=4,,则AB的长为( )
    A.B.C.8D.
    8、(4分)下列分解因式正确的是( )
    A.x2﹣4=(x﹣4)(x+4)B.2x3﹣2xy2=2x(x+y)(x﹣y)
    C.x2+y2=(x+y)2D.x2﹣2x+1=x(x﹣2)+1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知是实数,且和都是整数,那么的值是________.
    10、(4分)分式的最简公分母为_____.
    11、(4分)如图,△ABC是边长为1的等边三角形,分别取AC,BC边的中点D,E,连接DE,作EF∥AC,得到四边形EDAF,它的周长记作C1;分别取EF,BE的中点D1,E1,连接D1E1,作E1F1∥EF,得到四边形E1D1FF1,它的周长记作C2…照此规律作下去,则C2018=_____.
    12、(4分)有一个一元二次方程,它的一个根 x1=1,另一个根-2<x2<1. 请你写出一个符合这样条件的方程:_________.
    13、(4分)若数据10,9,a,12,9的平均数是10,则这组数据的方差是_____
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:如图1,在平面直角坐标系中,直线:与坐标轴分别相交于点A、B与:相交于点C.
    (1)求点C的坐标;
    (2)若平行于y轴的直线交于直线于点E,交直线于点D,交x轴于点M,且,求a的值;
    15、(8分)如图,在平面直角坐标系xOy中,一次函数y=-x+b的图象与反比例函数y=-的图象交于点A(-4,a)和B(1,m).
    (1)求b的值和点B的坐标;
    (2)如果P(n,0)是x轴上一点,过点P作x轴垂线,交一次函数于点M,交反比例函数于点N,当点M在点N上方时,直接写出n的取值范围.
    16、(8分)如图,在正方形中,点是边上的一动点,点是上一点,且,、相交于点.
    (1)求证:;
    (2)求的度数
    (3)若,求的值.
    17、(10分)解方程:
    (1)x2﹣4x=1
    (2)
    18、(10分)如图1,在平画直角坐标系中,直线交轴于点,交轴于点,将直线沿轴向右平移2个单位长度交轴于,交轴于,交直线于.
    (1)直接写出直线的解析式为______,______.
    (2)在直线上存在点,使是的中线,求点的坐标;
    (3)如图2,在轴正半轴上存在点,使,求点的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,将绕点按顺时针方向旋转至,使点落在的延长线上.已知,则___________度;如图,已知正方形的边长为分别是边上的点,且,将绕点逆时针旋转,得到.若,则的长为_________ .
    20、(4分)已知一组数据0,1,2,2,x,3的平均数是2,则这组数据的方差是_____.
    21、(4分)已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.
    22、(4分)化简二次根式的结果是______.
    23、(4分)如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则关于x的方程k1x+a=k2x+b的解是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在平面直角坐标系 中,的直角边在轴上,.点的坐标为,点的坐标为,是边的中点,函数 的图象经过点.
    (1)求的值;
    (2)将绕某个点旋转后得到(点 ,, 的对应点分别为点,,),且 在轴上,点在函数的图象上,求直线的表达式.
    25、(10分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点).
    (1)画出关于点的中心对称的;
    (2)画出绕点顺时针旋转后的;
    (3)求(2)中线段扫过的面积.
    26、(12分)如图,在直角坐标系中,四边形OABC为矩形,A(6,0),C(0,3),点M在边OA上,且M(4,0),P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度分别为每秒1个单位、每秒2个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位).
    (1)用含t的代数式表示点P的坐标.
    (2)分别求当t=1,t=3时,线段PQ的长.
    (3)求S与t之间的函数关系式.
    (4)直接写出L落在第一象限的角平分线上时t的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.
    【详解】
    分式的值为0,
    ,,
    解得:,
    故选C.
    本题考查了分式的值为零的条件,熟知“分子为0且分母不为0时,分式的值为0”是解题的关键.
    2、B
    【解析】
    根据中心对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是中心对称图形,故本选项错误;
    B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误.
    故选:B.
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    3、B
    【解析】
    分别计算出各个图形的重叠部分面积即可求解.
    【详解】
    A.重叠部分为矩形,长是4宽是2,,所以面积为4×2=8;
    B.重叠部分是平行四边形,与正方形边重合部分的长大于2,高是4,所以面积大于8;
    C. 图C与图B对比,因为图C的倾斜度比图B的倾斜度小,所以,图C的底比图B的底小,两图为等高不等底,所以图C阴影部分的面积小于图B阴影部分的面积;
    D.如图,BD=,GE=DE=2,HF=BF=2,
    ∴GH=,
    ∴S重叠部分=,小于8;
    故选B.
    本题主要考查平行四边形的、矩形及梯形的面积的运算,分别对选项进行计算判断即可.
    4、A
    【解析】
    由题意,利用勾股定理求出点A到−1的距离,即可确定出点A表示的数.
    【详解】
    根据题意得:数轴上的点A所表示的数为−1=,
    故选:A.
    此题考查了实数与数轴,弄清点A表示的数的意义是解本题的关键.
    5、B
    【解析】
    求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
    【详解】
    把这些数从小到大为:18℃,19℃,19℃,20℃,20℃,21℃,21℃,21℃,22℃,22℃,
    则中位数是: =20.5℃;
    故选B.
    考查中位数问题,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
    6、B
    【解析】
    根据不等式的性质对各选项分析判断即可得解.
    【详解】
    解:A、a>b不等式两边都乘以c,c的正负情况不确定,所以ac>bc不一定成立,故本选项错误;
    B、a>b不等式的两边都减去3可得a-3>b-3,故本选项正确;
    C、a>b不等式的两边都乘以-2可得-2a<-2b,故本选项错误;
    D、a>b不等式两边都除以2可得,故本选项错误.
    故选:B.
    本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
    7、A
    【解析】
    由平行四边形ABCD中,OA=OB得到平行四边形ABCD是矩形,又,得到三角形AOD为等边三角形,再利用勾股定理得到AB的长.
    【详解】
    解:∵四边形ABCD为平行四边形,对角线AC、BD相交于点O,
    ∴OA=OC,OB=OD,
    又∵OA=OB,
    ∴OA=OD=OB=OC,
    ∴平行四边形ABCD为矩形,∠DAB=90°,
    而,
    ∴为等边三角形,
    ∴AD=OD=OA=OB=4,
    在Rt中,AD=4,DB=2OD=8,
    ∴,
    故选:A.
    本题利用了矩形的判定和性质,等边三角形的判定及性质,勾股定理定理的应用求解.属于基础题.
    8、B
    【解析】
    A、原式利用平方差公式分解得到结果,即可做出判断;
    B、原式提取公因式得到结果,即可做出判断;
    C、原式利用完全平方公式分解得到结果,即可做出判断;
    D、原式利用完全平方公式分解得到结果,即可做出判断;
    【详解】
    A、原式=(x+2)(x﹣2),不符合题意;
    B、原式=2x(x+y)(x﹣y),符合题意;
    C、原式不能分解,不符合题意;
    D、原式=(x﹣1)2,不符合题意,
    故选B.
    此题考查因式分解运用公式法和因式分解提公因式法,解题关键在于灵活运用因式分解进行计算
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据题意可以设m+=a(a为整数),=b(b为整数),求出m,然后代人=b求解即可.
    【详解】
    由题意设m+=a(a为整数),=b(b为整数),
    ∴m=a-,
    ∴=b,
    整理得:

    ∴b2-8=1,8a-ab2=-b,
    解得:b=±3,a=±3,
    ∴m=±3-.
    故答案为​±3-.
    本题主要考查的是实数的有关知识,根据题意可以设m+=a(a为整数),=b(b为整数),整理求出a,b的值是解答本题的关键..
    10、10xy2
    【解析】
    试题解析: 分母分别是 故最简公分母是
    故答案是:
    点睛:确定最简公分母的方法是:
    (1)取各分母系数的最小公倍数;
    (2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
    (3)同底数幂取次数最高的,得到的因式的积就是最简公分母.
    11、
    【解析】
    根据三角形中位线定理可求出C1的值,进而可得出C2的值,找出规律即可得出C2018的值
    【详解】
    解:∵E是BC的中点,ED∥AB,
    ∴DE是△ABC的中位线,
    ∴DE=AB=,AD=AC=,
    ∵EF∥AC,
    ∴四边形EDAF是菱形,
    ∴C1=4×;
    同理求得:C2=4×;



    故答案为:.
    本题考查了三角形中位线定理、等边三角形的性质、菱形的性质;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.
    12、(答案不唯一).
    【解析】
    可选择x2=-1,则两根之和与两根之积可求,再设一元二次方程的二次项系数为1,那么可得所求方程.
    【详解】
    解:∵方程的另一个根-2<x2<1,
    ∴可设另一个根为x2=-1,
    ∵一个根 x1=1,
    ∴两根之和为1,两根之积为-1,
    设一元二次方程的二次项系数为1,此时方程应为.
    本题考查的是已知两数,构造以此两数为根的一元二次方程,这属于一元二次方程根与系数关系的知识,对于此类问题:知道方程的一个根和另一个根的范围,可设出另一个根的具体值,进一步求出两根之和与两根之积,再设一元二次方程的二次项系数为1,那么所求的一元二次方程即为.
    13、1.2
    【解析】分析: 先由平均数的公式计算出a的值,再根据方差的公式计算即可.
    详解: ∵数据10,9,a,12,9的平均数是10,
    ∴(10+9+a+12+9)÷5=10,
    解得:a=10,
    ∴这组数据的方差是15[(10−10) ² +(9−10) ² +(10−10) ² +(12−10) ² +(9−10) ²]=1.2.
    故选B.
    点睛: 本题考查方差和平均数,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) C坐标为;(2) 2或1.
    【解析】
    (1)联立两直线解析式得到方程组,求出方程组的解即可确定出的坐标;
    (2)将代入两直线方程求出对应的值,确定出与的纵坐标,即与的长,由求出的长,根据,求出的长,将代入两直线方程,求出与对应的横坐标,相减的绝对值等于的长列出关于的方程,求出方程的解即可求出的值.
    【详解】
    解:(1)联立两直线解析式得:,
    解得:,
    则点C坐标为;
    (2)由题意:
    解得或1.
    此题属于一次函数综合题,主要考查了两直线的交点问题,以及一次函数图象上点的坐标特征.解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
    15、(1)b的值为-3,点B的坐标为(1,-4);(2)n<-4或0<n<1
    【解析】
    (1)将A(-4,a)和B(1,m)代入数y=-,可求a、m的值,即可求得B的坐标,然后利用待定系数法即可求得b;
    (2)由图象结合A、B的坐标直接得到.
    【详解】
    解:(1)∵反比例函数y=-的图象经过点A(-4,a)和B(1,m).
    ∴-4a=-4,m=-4,
    ∴a=1,m=-4,
    ∴A(-4,1),B(1,-4),
    ∵一次函数y=-x+b的图象经过B(1,-4),
    ∴-1+b=-4,求得b=-3;
    故b的值为-3点B的坐标为(1,-4);
    (2)∵A(-4,1),B(1,-4),
    ∴由图象可知,当n<-4或0<n<1,点M在点N上方.
    本题考查了反比例函数和一次函数的交点问题,利用待定系数法求解析式是本题的关键.
    16、(1)见解析;(2)∠AGD=90°;(3).
    【解析】
    (1)直接利用正方形的性质得到AD=DC,∠ADF=∠DCE,,结合全等三角形的判定方法得出答案;
    (2)根据∠DAF=∠CDE和余角的性质可得∠AGD=90°;
    (3)利用全等三角形的判定和性质得出△ABH≌△ADG(AAS),即可得出的值.
    【详解】
    (1)证明:∵四边形ABCD是正方形,
    ∴AD=DC,∠ADF=∠DCE=90°,
    在△ADF和△DCE中

    ∴△ADF≌△DCE(SAS);
    (2)解:由(1)得△ADF≌△DCE,
    ∴∠DAF=∠CDE,
    ∵∠ADG+∠CDE=90°,
    ∴∠ADG+∠DAF=90°,
    ∴∠AGD=90°,
    (3)过点B作BH⊥AG于H
    ∵BH⊥AG,
    ∴∠BHA=90°,
    ∴∠BHA=∠AGD,
    ∵四边形ABCD是正方形,
    ∴AB=AD=BC,∠BAD=90°,
    ∵∠ABH+∠BAH=90°,∠DAG+∠BAH=90°,
    ∴∠ABH=∠DAG,
    在△ABH和△ADG中

    ∴△ABH≌△ADG(AAS),
    ∴AH=DG,
    ∵BG=BC,BA=BC,
    ∴BA=BG,
    ∴AH=AG,
    ∴DG=AG,
    ∴.
    此题主要考查了正方形的性质以及全等三角形的判定和性质,正确得出△ABH≌△ADG是解题关键.
    17、(1)x1=2+,x2=2﹣;(2)原方程无解.
    【解析】
    (1)首先采用凑完全平方公式的原则,凑成完全平方式,在求解.
    (2)采用分式方程的求解方法求解即可.
    【详解】
    解:(1)∵x2﹣4x+4=1+4,
    ∴(x﹣2)2=5,
    则x﹣2=±,
    ∴x1=2+,x2=2﹣;
    (2)方程两边同时乘以(x+2)(x﹣2)得:
    (x﹣2)2﹣(x+2)(x﹣2)=16,
    解得:x=﹣2,
    检验:当x=﹣2时,(x+2)(x﹣2)=0,
    ∴x=﹣2是原方程的增根,
    ∴原方程无解.
    本题主要考查分式方程和完全平方式方程的解法,关键在于凑和分式方程的分母的增根检验.
    18、(1),22;(2);(3)
    【解析】
    (1)根据平移规律“上加下减、左加右减”进行计算可得到平移后的解析式,再分别求出A,B,C的坐标,即可计算出22;
    (2)作轴于,轴于,易得,则,
    再将x=4代入得到y=11,所以;
    (3)在轴正半轴上取一点,使,由外角性质和等腰三角形的性质得出,再用勾股定理求得OP的长,即可得出答案.
    【详解】
    解:(1)直线沿x轴向右平移2个单位长度,则
    y=-2(x-2)-7
    =-2x-3
    将和联立,得
    解得
    易得
    故答案为:,22;
    (2)作轴于,轴于,

    ∴,,
    ∵为的中线,
    ∴,
    ∵,
    ∴,
    ∴,
    在中,
    当时,,
    ∴.
    (3)由(1)得,,
    ∴, ,
    在轴正半轴上取一点,使,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    在中,由勾股定理可得:,
    ∴.
    本题考查了一次函数和几何的综合,熟练掌握一次函数的图象和性质是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、46 2.1
    【解析】
    先利用三角形外角性质得∠ACA′=∠A+∠B=67°,再根据旋转的性质得∠BCB′=∠ACA′=67°,然后利用平角的定义计算∠ACB′的度数;由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=41°,得到∠MDF为41°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为FM的长..
    【详解】
    解:∵∠A=27°,∠B=40°,
    ∴∠ACA′=∠A+∠B=67°,
    ∵△ABC绕点C按顺时针方向旋转至△A′B′C,
    ∴∠BCB′=∠ACA′=67°,
    ∴∠ACB′=180°-67°-67°=46°.
    ∵△DAE逆时针旋转90°得到△DCM,
    ∴∠FCM=∠FCD+∠DCM=180°,
    ∴F、C、M三点共线,
    ∴DE=DM,∠EDM=90°,
    ∴∠EDF+∠FDM=90°,
    ∵∠EDF=41°,
    ∴∠FDM=∠EDF=41°,
    在△DEF和△DMF中,,
    ∴△DEF≌△DMF(SAS),
    ∴EF=MF,
    设EF=MF=x,
    ∵AE=CM=1,且BC=3,
    ∴BM=BC+CM=4,
    ∴BF=BM-MF=BM-EF=4-x,
    ∵EB=AB-AE=2,
    在Rt△EBF中,由勾股定理得EB2+BF2=EF2,
    即22+(4-x)2=x2,
    解得:x=2.1,
    ∴FM=2.1.
    故答案为:46;2.1.
    本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理的综合应用.解题的关键是掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.
    20、.
    【解析】
    已知数据0,1,2,2,x,3的平均数是2,
    由平均数的公式计算可得(0+1+2+2+x+3)÷6=2,
    解得x=4,
    再根据方差的公式可得,
    这组数据的方差= [(2﹣0)2+(2﹣1)2+(2﹣2)2+(2﹣2)2+(2﹣4)2+(2﹣3)2]=.
    21、2, 0≤x≤2或≤x≤2.
    【解析】
    (2)由图象直接可得答案;
    (2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
    【详解】
    (2)由 函数图象可知,乙比甲晚出发2小时.
    故答案为2.
    (2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
    一是甲出发,乙还未出发时:此时0≤x≤2;
    二是乙追上甲后,直至乙到达终点时:
    设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
    ∴k=5,
    ∴甲的函数解析式为:y=5x①
    设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
    解得 ,
    ∴乙的函数解析式为:y=20x﹣20 ②
    由①②得 ,
    ∴ ,
    故 ≤x≤2符合题意.
    故答案为0≤x≤2或≤x≤2.
    此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
    22、
    【解析】
    利用二次根式的性质化简.
    【详解】
    =.
    故选为:.
    考查了二次根式的化简,常用方法:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.
    23、x=1
    【解析】
    由交点坐标就是该方程的解可得答案.
    【详解】
    关于x的方程k2x+b=k1x+a的解,
    即直线y1=k1x+a与直线y2=k2x+b的交点横坐标,
    所以方程的解为x=1.
    故答案为:1.
    本题考查的知识点是一次函数与一元一次方程,一次函数的图象和性质,解题的关键是熟练的掌握一次函数与一元一次方程,一次函数的图象和性质.
    二、解答题(本大题共3个小题,共30分)
    24、(1)5;(4)y=4x-1.
    【解析】
    (1)根据直角三角形的性质和坐标与图形的特点求得点的坐标,将其代入反比例函数解析式求得的值;
    (4)根据旋转的性质推知:,故其对应边、角相等:,,,由函数图象上点的坐标特征得到:,.结合得到,利用待定系数法求得结果.
    【详解】
    (1)∵Rt△ABC的直角边AB在x轴上,∠ABC=90°,点C的坐标为(5,4),
    ∴点B的坐标为(5,0),CB=4.
    ∵M是BC边的中点,
    ∴点M的坐标为(5,4).
    ∵函数的图像进过点M,
    ∴k=5×4=5.
    (4)∵△ABC绕某个点旋转180°后得到△DEF,
    ∴△DEF≌△ABC.
    ∴DE=AB,EF=BC,∠DEF=∠ABC=90°.
    ∵点A的坐标为(1,0),点B的坐标为(5,0),
    ∴AB=4.
    ∴DE=4.
    ∵EF在y轴上,
    ∴点D的横坐标为4.
    ∵点D在函数的图象上,
    当x=4时,y=5.
    ∴点D的坐标为(4,5).
    ∴点E的坐标为(0,5).
    ∵EF=BC=4,
    ∴点F的坐标为(0,-1).
    设直线DF的表达式为y=ax+b,将点D,F的坐标代入,
    得 解得 .
    ∴直线DF的表达式为y=4x-1.
    本题考查了待定系数法求一次函数解析式,反比例函数图象上点的坐标特征,旋转的性质.解题时,注意函数思想和数形结合数学思想的应用.
    25、(1)见解析;(2)见解析;(3).
    【解析】
    (1)根据中心对称的性质找出各个对应点的坐标,顺次连接即可;
    (2)根据旋转的性质找出旋转后各个对应点的坐标,顺次连接即可;
    (3)BC扫过的面积=S扇形OBB1− S扇形OCC1,由此计算即可.
    【详解】
    (1)如图
    (2)如图
    (3)扫过的面积=S扇形OBB1− S扇形OCC1
    本题考查的是旋转变换作图.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.
    26、(1)P(1+t,0)(0≤t≤1);(2)当t=1时, PQ=2,当t=2时, PQ=3;(2)S=;(1)t=或s时,L落在第一象限的角平分线上.
    【解析】
    (1)求出OP的长即可解决问题;
    (2)法两种情形分别求出MQ、PM的长即可解决问题;
    (2)法三种情形:①如图1中,当0≤t≤1时,重叠部分是正方形PQLR;②如图2中,当1<t≤2时,重叠部分是四边形PQDE;③如图2中,当2<t≤1时,重叠部分是四边形ABDQ,分别求解即可;
    (1)根据OQ=PQ,构建方程即可解决问题.
    【详解】
    解:(1)如图1中,∵M(1,0),
    ∴OM=1.PM=t,
    ∴OP=1+t,
    ∴P(1+t,0)(0≤t≤1).
    (2)当t=1时,MQ=2,MP=1,
    ∴PQ=2.
    当t=2时,MQ=2,PM=2,
    ∴PQ=2+2=3.
    (2)①如图1中,当0≤t≤1时,重叠部分是正方形PQLR,S=PQ2=9t2
    ②如图2中,当1<t≤2时,重叠部分是四边形PQDE,S=PQ•DQ=9t.
    ③如图2中,当2<t≤1时,重叠部分是四边形ABDQ,S=AQ•AB=2[6-2(t-2)]=-6t+20.
    综上所述,S=.
    (1)L落在第一象限的角平分线上时,OQ=LQ=PQ,
    ∴1-2t=2t或2(t-2)=t+1-2(t-2),
    解得t=或.
    ∴t=或s时,L落在第一象限的角平分线上.
    本题考查四边形综合题、矩形的性质、正方形的性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会由方程的思想思考问题,属于中考压轴题.
    题号





    总分
    得分
    批阅人
    最高气温()
    18
    19
    20
    21
    22
    天数
    1
    2
    2
    3
    2

    相关试卷

    2024-2025学年湖北省武汉江夏区五校联考九上数学开学质量跟踪监视试题【含答案】:

    这是一份2024-2025学年湖北省武汉江夏区五校联考九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省武汉二中广雅中学数学九上开学统考试题【含答案】:

    这是一份2024-2025学年湖北省武汉二中广雅中学数学九上开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省武汉第三寄宿中学数学九上开学统考试题【含答案】:

    这是一份2024-2025学年湖北省武汉第三寄宿中学数学九上开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map