2024-2025学年湖北省宜昌市点军区数学九年级第一学期开学教学质量检测试题【含答案】
展开这是一份2024-2025学年湖北省宜昌市点军区数学九年级第一学期开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,点M(﹣2,1)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)若函数的图象与坐标轴有三个交点,则b的取值范围是
A.且B.C.D.
3、(4分)下列曲线中不能表示y与x的函数的是( )
A.B.C.D.
4、(4分)如图,矩形ABCD中, E是AD的中点,将沿直线BE折叠后得到,延长BG交CD于点F若, 则FD的长为( )
A.3B.C.D.
5、(4分)在一个直角三角形中,已知两直角边分别为6cm,8cm,则下列结论不正确的是( )
A.斜边长为10cmB.周长为25cm
C.面积为24cm2D.斜边上的中线长为5cm
6、(4分)如图,正方形纸片ABCD的边长为4 cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是( )
\
A.2 cmB.4 cmC. cmD.1 cm
7、(4分)在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是( )
A.y=2x+1B.y=2x﹣1C.y=2x+2D.y=2x﹣2
8、(4分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能用来证明勾股定理的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,绕点旋转得到,则点的坐标为_______.
10、(4分)将直线平移后经过点(5,),则平移后的直线解析式为______________.
11、(4分)在▱ABCD中,对角线AC和BD交于点O,AB=2,AC=6,BD=8,那么△COD的周长为_____.
12、(4分)若一组数据1,3,x,4,5,6的平均数是4,则这组数据的众数是_____.
13、(4分)如图,在中,按如下步骤操作:①以点为圆心,长为半径画弧交于点;②再分别以点、为圆心,大于的长为半径画弧,两弧交于一点;③连接并延长交于点,连接.若,,则的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)
小明通过试验发现;将一个矩形可以分别成四个全等的矩形,三个全等的矩形,二个全等的矩形(如上图),于是他对含的直角三角形进行分别研究,发现可以分割成四个全等的三角形,三个全等的三角形.
(1)请你在图1,图2依次画出分割线,并简要说明画法;
(2)小明继续想分割成两个全等的三角形,发现比较困难.你能把这个直角三角形分割成两个全等的三角形吗?若能,画出分割线;若不能,请说明理由.(注:备用图不够用可以另外画)
15、(8分)申思同学最近在网上看到如下信息:
总书记明确指示,要重点打造北京非首都功能疏解集中承载地,在河北适合地段规划建设一座以新发展理念引领的现代新型城区.雄安新区不同于一般意义上的新区,其定位是重点承接北京疏解出的与去全国政治中心、文化中心、国际交往中心、科技创新中心无关的城市功能,包括行政事业单位、总部企业、金融机构、高等院校、科研院所等.右图是北京、天津、保定和雄安新区的大致交通图,其中保定、天津和雄安新区可近似看作在一条直线上.申思同学想根据图中信息求出北京和保定之间的大致距离.
他先画出如图示意图,其中AC=AB=BC=100,点C在线段BD上,他把CD近似当作40,来求AD的长.
请帮申思同学解决这个问题.
16、(8分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如下所示的统计表和如图所示的统计图.
根据图表中提供的信息,回答下列问题:
(1)女生身高在B组的有________人;
(2)在样本中,身高在150≤x<155之间的共有________人,身高人数最多的在________组(填组别序号);
(3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生有多少人.
17、(10分)如图,直线分别与轴、轴相交于点和点,点的坐标为,点的坐标为.
(1)求的值;
(2)若点是第二象限内的直线上的一个动点,当点运动过程中,试写出的面积与的函数关系式,并写出自变量的取值范围;
(3)探究:当运动到什么位置时,的面积为,并说明理由.
18、(10分)解方程:(1)x2+2x=0 (2)x2-4x-7=0.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)用反证法证明“如果,那么.”是真命题时,第一步应先假设________ .
20、(4分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离与慢车行驶的时间之间的函数关系如图所示,则快车的速度为__________.
21、(4分)一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要___小时.
22、(4分)如图,A,B的坐标为(1,0),(0,2),若将线段AB平移至A1B1,则a﹣b的值为____.
23、(4分)如图,矩形ABCD中,AB=,AD=1.点E是BC边上的一个动点,连接AE,过点D作DF⊥AE于点F.当△CDF是等腰三角形时,BE的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,方格纸中每个小方格都长为1个单位的正方形,已知学校位置坐标为A(1,2)。
(1)请在图中建立适当的平面直角坐标系;
(2)写出图书馆B位置的坐标。
25、(10分)一个边数为的多边形中所有对角线的条数是边数为的多边形中所有对角线条数的6倍,求这两个多边形的边数.
26、(12分)南江县在“创国家级卫生城市”中,朝阳社区计划对某区域进行绿化,经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.求甲、乙两工程队每天能完成绿化的面积是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
∵点P的横坐标为负,纵坐标为正,
∴该点在第二象限.
故选B.
2、A
【解析】
抛物线与坐标轴有三个交点,则抛物线与x轴有2个交点,与y轴有一个交点.
解:∵函数的图象与坐标轴有三个交点,
∴,且,
解得,b<1且b≠0.
故选A.
3、C
【解析】
函数是在一个变化过程中有两个变量x,y,一个x只能对应唯一一个y.
【详解】
当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.
选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x的值对应,因而不是函数关系.
函数图像的判断题,只需过每个自变量在x轴对应的点,作垂直x轴的直线观察与图像的交点,有且只有一个交点则为函数图象。
4、C
【解析】
根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.
【详解】
∵E是AD的中点,
∴AE=DE,
∵△ABE沿BE折叠后得到△GBE
∴AE=EG,AB=BG,
∴ED=EG,
∵在矩形ABCD中,
∴∠A=∠D=90°,
∴∠EGF=90°,
∵在Rt△EDF和Rt△EGF中,
,
∴Rt△EDF≌Rt△EGF(HL),
∴DF=FG,
设DF=x,则BF=6+x,CF=6-x,
在Rt△BCF中,102+(6-x)2=(6+x)2,
解得x=.
故选C.
本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件ED=EG是解题的关键.
5、B
【解析】
试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,
∴直角三角形的面积=×6×8=24cm2,故选项C不符合题意;
∴斜边 故选项A不符合题意;
∴斜边上的中线长为5cm,故选项D不符合题意;
∵三边长分别为6cm,8cm,10cm,
∴三角形的周长=24cm,故选项B符合题意,
故选B.
点睛:直角三角形斜边的中线等于斜边的一半.
6、A
【解析】
如图,取AB,CD的中点K,G,连接KG,BD交于点O,由题意知,点Q运动的路线是线段OG,因为DO=OB,所以DG=GC,所以OG=BC=×4=2,所以点Q移动路线的最大值是2,故选A.
7、C
【解析】
试题分析:函数图像的平移法则为:上加下减,左加右减,则直线y=2x向左平移1个单位后的直线解析式为:y=2(x+1)=2x+2.
8、C
【解析】
根据A、B、C、D各图形结合勾股定理一一判断可得答案.
【详解】
解:A、有三个直角三角形, 其面积分别为ab,ab和,
还可以理解为一个直角梯形,其面积为,由图形可知:
=ab+ab+,
整理得:(a+b)=2ab+c,a+b+2ab=2ab+ c, a+b= c
能证明勾股定理;
B、中间正方形的面积= c,中间正方形的面积=(a+b)-4ab=a+b,
a+b= c,能证明勾股定理;
C、不能利用图形面积证明勾股定理, 它是对完全平方公式的说明.
D、大正方形的面积= c,大正方形的面积=(b-a)+4ab = a+b,,
a+b= c,能证明勾股定理;
故选C.
本题主要考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交于点D,点D即为所求.
【详解】
解:连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交点即为点D,如图,旋转中心D的坐标为(3,0).
故答案为:(3,0).
本题考查了旋转的性质,掌握对应点连线的垂直平分线的交点就是旋转中心是解题的关键.
10、y=2x-1
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=2x+b.
把(5,1)代入直线解析式得1=2×5+b,
解得 b=-1.
所以平移后直线的解析式为y=2x-1.
故答案为:y=2x-1.
本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
11、1
【解析】
△COD的周长=OC+OD+CD,根据平行四边形的对角线互相平分的性质求得OC与OD的长,根据平行四边形的对边相等可得CD=AB=2,进而求得答案
【详解】
解:∵四边形ABCD是平行四边形,
∴OC=OA=AC=3,OD=OB=BD=4,CD=AB=2,
∴△COD的周长=OC+OD+CD=3+4+2=1.
故答案为1.
此题考查平行四边形的性质,解题关键在于画出图形
12、5
【解析】
根据题意可知这组数据的和是24,列方程即可求得x,然后求出众数.
【详解】
解:由题意可知,1+3+x+4+5+6=4×6,
解得:x=5,
所以这组数据的众数是5.
故答案为5.
此题考查了众数与平均数的知识.众数是这组数据中出现次数最多的数.
13、8
【解析】
根据菱形的判定与性质及角平分线的特点即可求解.
【详解】
依题意可知AE平方∠BAD,∵四边形ABCD为平行四边形,
∴为菱形,∴AE⊥BF,
∵,∴OB=3,又,
∴AO=
∴AE=2AO=8
此题主要考查特殊平行四边形的判定与性质,解题的关键是熟知角平分线的性质与菱形的判定与性质定理.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
(1)利用三角形中位线的性质以及垂直平分线的性质得出符合要求的图形即可;
(2)利用要把△ABC分割成两个三角形则分割线必须经过三角形的顶点,分别分析得出答案即可.
【详解】
(1)如图1,取AC的中点D作ED⊥AB垂足为E,作DF⊥BC垂足为F,连接DB,
此时△AED≌△BED≌△DFB≌△DFC,
如图2,取AC的中点D,作AC的中垂线交BC于E,连接AE;
此时△ABE≌△ADE≌△CDE;
(2)不能,因为要把△ABC分割成两个三角形则分割线必须经过三角形的顶点,
但分割线过锐角顶点时,分割出的两个三角形必定一个是直角而另一个不是,所以不全等;
当分割线经过直角顶点时,若分割线与斜边不垂直时(见备用图1),分割出的两个三角形必定一个是锐角三角形而另一个是钝角三角形,所以不全等;
而当分割线与斜边垂直时(见备用图2),分割出的两个直角三角形相似,
但相似比是:1:,所以不全等,
综上所述,不能把这个直角三角形分割成两个全等的小三角形。
本题考查作图,根据题意利用三角形中位线的性质以及垂直平分线的性质得出符合要求的图形是解题关键.
15、见解析
【解析】
试题分析:作,构造直角三角形,先求出DE和AE的长度,再根据勾股定理求得AD的长度.
试题解析:
作.
∵,
∴为等边三角形.
∵,
∴,,
∴,
∴.
∵中,
.
∵,
∴.
∵中,
,
.
∵,
∴.
16、(1)12;(2)16;C;(3) 541人.
【解析】
先计算出B组所占百分之再求即可
将位于这一小组内的频数相加即可求得结果;
分别计算男、女生的人数,相加即可得解.
【详解】
解:(1)女生身高在B组的人数有40×(1−30%−20%−15%−5%)=12人;
(2) 在样本中,身高在150⩽x<155之间的人数共有4+12=16人,身高人数最多的在C组;
(3)500×+480×(30%+15%)=541(人).
答:估计身高在155≤x<165之间的学生约有541人.
本题主要考查从统计图表中获取信息,解题的关键是要读懂统计图.
17、(1);(2);(3)P点坐标为时,的面积为,理由见解析
【解析】
(1)把E的坐标为(−8,0)代入y=kx+6中即可求出k的值;
(2)如图,OA的长度可以根据A的坐标求出,OA作为△OPA的底,P点横坐标的绝对值作为高的长度,那么根据三角形的面积公式就可以求出△OPA的面积S与x的函数关系式,自变量x的取值范围可以利用点P(x,y)是第二象限内的直线上的一个动点来确定;
(3)可以利用(2)的结果求出P的横坐标,然后就可以求出P的纵坐标.
【详解】
解:(1)直线分别与轴、轴相交于点和点,点的坐标为,
,
;
(2)如图,过作于,
点是第二象限内的直线上的一个动点,则,
,
∵点的坐标为,
∴OA=3,
∴;
(3)当P点坐标为时,的面积为,理由如下:
当时,即,
解得:,
.
坐标为,.
此题把一次函数与三角形的面积相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.解答此题的关键是根据一次函数的特点,分别求出已知各点的坐标再计算.
18、(1)与;(2)与
【解析】
(1)运用因式分解法解方程即可;
(2)利用公式法解方程即可.
【详解】
解:(1)x(x+2)=0
∴,
(2)a=1,b=-4,c=-7
∴Δ=b2-4ac=44
∴
∴,
本题考查了一元二次方程的解法,根据方程的特征选择合适的解法可以事半功倍.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、a≥0
【解析】
用反正法证明命题应先假设结论的反面成立,本题结论的反面应是.
【详解】
解: “如果,那么.”是真命题时 ,用反证法证明第一步应假设.
故答案为:
本题考查了反证法,熟练掌握反证法的证明步骤是解题的关键.
20、150km/h
【解析】
假设快车的速度为a(km/h),慢车的速度为b(km/h).当两车相遇时,两车各自所走的路程之和就是甲乙两地的距离,由此列式4a+4b=900①,另外,由于快车到达乙地的时间比慢车到达甲地的时间要短,图中的(12,900)这个点表示慢车刚到达甲地,这时的两车距离等于两地距离,而x=12就是慢车正好到达甲地的时间,所以,12b=900②,①和②可以求出快车的速度.
【详解】
解:设快车的速度为a(km/h),慢车的速度为b(km/h),
∴4(a+b)=900,
∵慢车到达甲地的时间为12小时,
∴12b=900,
b=75,
∴4(a+75)=900,
解得:a=150;
∴快车的速度为150km/h.
故答案为:150km/h.
此题主要考查了一次函数的应用,解题的关键是首先正确理解题意,然后根据题目的数量关系得出b的值.
21、
【解析】
甲单独做一天可完成工程总量的,乙单独做一天可完成工程总量的,二人合作一天可完成工程总量的.工程总量除以二人合作一天可完成工程量即可得出二人合作完成该工程所需天数.
【详解】
解答:解:设该工程总量为1.
二人合作完成该工程所需天数=1÷()=1÷=.
本题考查列代数式(分式),解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
22、1
【解析】
试题解析:由B点平移前后的纵坐标分别为2、4,可得B点向上平移了2个单位,
由A点平移前后的横坐标分别是为1、3,可得A点向右平移了2个单位,
由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,
所以点A、B均按此规律平移,
由此可得a=2,b=2,
故a-b=1.
【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
23、1、、1﹣
【解析】
过点C作CM⊥DF,垂足为点M,判断△CDF是等腰三角形,要分类讨论,①CF=CD;②DF=DC;③FD=FC,根据相似三角形的性质进行求解.
【详解】
①CF=CD时,过点C作CM⊥DF,垂足为点M,
则CM∥AE,DM=MF,
延长CM交AD于点G,
∴AG=GD=1,
∴CE=1,
∵CG∥AE,AD∥BC,
∴四边形AGCE是平行四边形,
∴CE=AG=1,
∴BE=1
∴当BE=1时,△CDF是等腰三角形;
②DF=DC时,则DC=DF=,
∵DF⊥AE,AD=1,
∴∠DAE=45°,
则BE=,
∴当BE=时,△CDF是等腰三角形;
③FD=FC时,则点F在CD的垂直平分线上,故F为AE中点.
∵AB=,BE=x,
∴AE=,
AF=,
∵△ADF∽△EAB,
∴,
,
x1﹣4x+1=0,
解得:x=1±,
∴当BE=1﹣时,△CDF是等腰三角形.
综上,当BE=1、、1﹣时,△CDF是等腰三角形.
故答案为:1、、1﹣.
此题难度比较大,主要考查矩形的性质、相似三角形的性质及等腰三角形的判定,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)(−3,−2);
【解析】
(1)利用点A的坐标画出直角坐标系;
(2)根据点的坐标的意义描出点B;
【详解】
(1)建立直角坐标系如图所示:
(2)图书馆(B)位置的坐标为(−3,−2);
故答案为:(−3,−2);
此题考查坐标确定位置,解题关键在于根据题意画出坐标系.
25、这两个多边形的边数分别为12和6.
【解析】
n边形的对角线有条,2n边形的对角线有条,根据题意可列出方程,再解方程求解即可.
【详解】
解:由多边形的性质,可知边形共有条对角线.
由题意,得.
解得.
∴.
∴这两个多边形的边数分别为12和6.
本题考查了多边形对角线的性质(条数)和解一元一次方程,熟记n边形对角线的条数公式是解此题的关键.
26、甲、乙两工程队每天能完成绿化的面积分别是100m1、50m1.
【解析】
设乙工程队每天能完成绿化的面积是xm1,根据在独立完成面积为400m1区域的绿化时,甲队比乙队少用4天,列方程求解即可.
【详解】
设乙工程队每天能完成绿化的面积是x(m1),根据题意得
,
解得:x=50,
经检验:x=50是原方程的解,且符合实际意义,
所以甲工程队每天能完成绿化的面积是50×1=100(m1),
答:甲、乙两工程队每天能完成绿化的面积分别是100m1、50m1.
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
题号
一
二
三
四
五
总分
得分
组别
身高(cm)
A
x<150
B
150≤x<155
C
155≤x<160
D
160≤x<165
E
x≥165
相关试卷
这是一份2024-2025学年湖北省舞阳中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省武汉青山区九年级数学第一学期开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省数学九年级第一学期开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。