2024-2025学年江苏省淮安市实验初级中学数学九年级第一学期开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=( )度.
A.270°B.300°
C.360°D.400°
2、(4分)一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的( )
A.B.C.D.
3、(4分)如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.1B.2C.3D.4
4、(4分)下列方程中是关于x的一元二次方程的是( )
A.x=x2﹣3B.ax2+bx+c=0
C.D.3x2﹣2xy﹣5y2=0
5、(4分)七巧板是一种古老的中国传统智力玩具.如图,在正方形纸板ABCD中,BD为对角线,E、F分别为BC、CD的中点,AP⊥EF分别交BD、EF于O、P两点,M、N分别为BO、DO的中点,连接MP、NF,沿图中实线剪开即可得到一副七巧板.若AB=1,则四边形BMPE的面积是( )
A.B.C.D.
6、(4分)若一个正n边形的每个内角为144°,则n等于( )
A.10B.8C.7D.5
7、(4分)若与成正比例,则是的( )
A.正比例函数B.一次函数C.其他函数D.不存在函数关系
8、(4分)如图,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面点A有一只蚂蚁,它想吃到上底面上与点A相对的点B的食物,需要爬行的最短路程是(π取3)( )
A.10cmB.12mC.14cmD.15cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知∠1=100°,∠2=140°,那么∠3=_____度.
10、(4分)不等式-->-1的正整数解是_____.
11、(4分)在平面直角坐标系中,正方形、、,…,按图所示的方式放置.点、、,…和点、、,…分别在直线和轴上.已知,,则点的坐标是______.
12、(4分)把多项式因式分解成,则的值为________.
13、(4分)如图,两个反比例函数y= 和y= 在第一象限内的图象依次是C2和C1,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)4月23日是世界读书日,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:):
四 、得出结论:
①表格中的数据: , , ;
②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为 ;
③如果该校现有学生400人,估计等级为“”的学生有 人;
④假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)
平均阅读 本课外书.
15、(8分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.
(1)求∠BAD的度数;
(2)若AB=10,BC=12,求△ABD的周长.
16、(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y轴上运动.
(1)求直线AB的函数解析式;
(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;
(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
17、(10分)如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.
(1)求证:DP=CG;
(2)判断△PQR的形状,请说明理由.
18、(10分)某工厂甲、乙两人加工同一种零件,每小时甲比乙多加工10个这种零件,甲加工150个这种零件所用的时间与乙加工120个这种零件所用的时间相等,
(1)甲、乙两人每小时各加工多少个这种零件?
(2)该工厂计划加工920个零件,甲参与加工这批零件不超过12小时,则乙至少加工多少小时才能加工完这批零件?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是 .
20、(4分)某水池容积为300m3,原有水100m3,现以xm3/min的速度匀速向水池中注水,注满水需要ymin,则y关于x的函数表达式为________.
21、(4分)已知,菱形的周长为8,高为1,则菱形两邻角的度数比为_________.
22、(4分)已知双曲线经过Rt△OAB斜边OA的中点D,与直角边AB相交于点C,若S△OAC=3,则k=______.
23、(4分)在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:
则这10个小组植树株数的方差是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形是平行四边形,是边上一点.
(1)只用无刻度直尺在边上作点,使得,保留作图痕迹,不写作法;
(2)在(1)的条件下,若,,求四边形的周长.
25、(10分)如图,在中,,过点的直线,为边上一点,过点作交直线于点,垂足为点,连结、.
(1)求证:;
(2)当点是中点时,四边形是什么特殊四边形?说明你的理由;
(3)若点是中点,当四边形是正方形时,则大小满足什么条件?
26、(12分)西蜀图书室近日购进甲、乙两种图书,每本甲图书的进价比每本乙图书的进价高20元,花780元购进甲图书的数量与花540元购进乙图书的数量相同.
(1)求甲、乙两种图书每本的进价分别是多少元?
(2)西蜀图书室计划购进甲、乙两种图书共70本,总购书费用不超过4000元,则最多购进甲种图书多少本?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据多边形的外角和等于360°解答即可.
【详解】
由多边形的外角和等于360°可知,
∠1+∠2+∠3+∠4+∠5=360°,
故答案为:360°.
本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.
2、B
【解析】
根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.
【详解】
解:由题意,得
y=30-5t,
∵y≥0,t≥0,
∴30-5t≥0,
∴t≤6,
∴0≤t≤6,
∴y=30-5t是降函数且图象是一条线段.
故选B.
本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.
3、D
【解析】
由点A、B的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.
【详解】
∵点A、B的坐标分别为(2,2)、B(4,0).
∴AB=2,
如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),
∴满足△ABC是等腰三角形的C点有1个;
②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;
③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;
综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.
故选D.
本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.
4、A
【解析】
根据一元二次方程的定义即可解答.
【详解】
选项A,由x=x2﹣3得到:x2﹣x﹣3=0,符合一元二次方程的定义,故本选项正确;
选项B,当a=0时,该方程不是一元二次方程,故本选项错误;
选项C,该方程不是整式方程,故本选项错误;
选项D,该方程属于二元二次方程,故本选项错误;
故选A.
本题考查了一元二次方程的定义,一元二次方程必须满足三个条件:(1)只含有一个未知数,未知数的最高次数是2;(2)二次项系数不为0;(3)方程为整式方程.
5、B
【解析】
根据三角形的中位线的性质得到EF∥BD,EF=BD,推出点P在AC上,得到PE=EF,得到四边形BMPE平行四边形,过M作MF⊥BC于F,根据平行四边形的面积公式即可得到结论.
【详解】
∵E,F分别为BC,CD的中点,
∴EF∥BD,EF=BD,
∵四边形ABCD是正方形,且AB=BC=1,
∴BD=,
∵AP⊥EF,
∴AP⊥BD,
∴BO=OD,
∴点P在AC上,
∴PE=EF,
∴PE=BM,
∴四边形BMPE是平行四边形,
∴BO=BD,
∵M为BO的中点,
∴BM=BD=,
∵E为BC的中点,
∴BE=BC=,
过M作MF⊥BC于F,
∴MF=BM=,
∴四边形BMPE的面积=BE•MF=,
故选B.
本题考查了七巧板,正方形的性质,平行四边形的判定和性质,三角形的中位线的性质,正确的识别图形是解题的关键.
6、A
【解析】
根据多边形的内角和公式列出关于n的方程,解方程即可求得答案.
【详解】
∵一个正n边形的每个内角为144°,
∴144n=180×(n-2),解得:n=10,
故选A.
本题考查了多边形的内角和公式,熟练掌握多边形的内角和公式是解题的关键.
7、B
【解析】
由题意可知,移项后根据一次函数的概念可求解.
【详解】
解:由题意可知,
则
因此,是的一次函数.
故选:B.
本题考查的知识点是一次函数的定义以及正比例函数的定义,比较基础,易于掌握.
8、D
【解析】
要想求得最短路程,首先要把A和B展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.
【详解】
解:展开圆柱的半个侧面是矩形,
矩形的长是圆柱的底面周长的一半,即3π≈9,矩形的宽是圆柱的高1.
根据两点之间线段最短,
知最短路程是矩形的对角线AB的长,即AB==15厘米.
故选:D.
此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、60°.
【解析】
该题是对三角形外角性质的考查,三角形三个外角的和为360°,所以∠4=360°-∠1-∠2=360°-100°-140°=120°,∠3=180°-120=60度.
【详解】
解:∵∠1=∠3+(180°-∠2),
∴∠3=∠1-(180°-∠2)=100°-(180°-140°)=60°.
故答案为:60°.
此题结合了三角形的外角和和邻补角的概念,要注意三角形的外角和与其它多边形一样,都是360°.
10、1,1
【解析】
首先确定不等式的解集,然后再找出不等式的特殊解.
【详解】
解:解不等式得:x<3,
故不等式的正整数解为:1,1.
故答案为1,1.
本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.
11、
【解析】
由正方形的轴对称性,由C1、C2的坐标可求A1、A2的坐标,将A1、A2的坐标代入y=kx+b中,得到关于k与b的方程组,求出方程组的解得到k与b的值,从而求直线解析式,由正方形的性质求出OB1,OB2的长,设B2G=A3G=t,表示出A3的坐标,代入直线方程中列出关于b的方程,求出方程的解得到b的值,确定出A3的坐标.
【详解】
连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G,
∵正方形A1B1C1O、A2B2C2B1、A3B3C3B2,
∴A1与C1关于x轴对称,A2与C2关于x轴对称,A3与C3关于x轴对称,
∵C1(1,-1),C2(,−),
∴A1(1,1),A2(,),
∴OB1=2OE=2,OB2=OB1+2B1F=2+2×(-2)=5,
将A1与A2的坐标代入y=kx+b中得: ,
解得: ,
∴直线解析式为y=x+,
设B2G=A3G=t,则有A3坐标为(5+t,t),
代入直线解析式得:t=(5+t)+,
解得:t=,
∴A3坐标为.
故答案是:.
考查了一次函数的性质,正方形的性质,利用待定系数法求一次函数解析式,是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用正方形的性质是解本题的关键.
12、
【解析】
根据多项式的乘法法则计算,然后即可求出m的值.
【详解】
∵=x2+6x+5,
∴m=6.
故答案为:6.
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解是乘法运算的逆运算.
13、2
【解析】
根据反比例函数k值的几何意义即可求解.
【详解】
∵C2:y= 过A,B两点, C1:y= 过P点
∴S△ACO= S△BOD=1,S矩形DPCO=4,
∴S四边形PAOB=4-1-1=2
此题主要考查反比例函数的图像和性质,解题的关键是熟知反比例函数k值的几何意义.
三、解答题(本大题共5个小题,共48分)
14、①5、4、80.5;②;③160;④1.
【解析】
①根据已知数据和中位数的概念可得;
②由样本中位数和众数、平均数都是 B等级可得答案;
③利用样本估计总体思想求解可得;
④用没有阅读书籍的平均时间乘以一年的周数,再除以阅读每本书所需时间即可得.
【详解】
①由已知数据知,,
第10、11个数据分别为80、81,
中位数,
故答案为:5、4、80.5;
②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为,
故答案为:;
③估计等级为“”的学生有(人),
故答案为:160;
④估计该校学生每人一年(按52周计算)平均阅读课外书(本),
故答案为:1.
此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众
数)和理解样本和总体的关系是关键.
15、(1)20°;(2)22.
【解析】
试题分析:(1)根据三角形内角和定理求出∠C,根据线段垂直平分线的性质得到DA=DC,求出∠DAC,计算即可;
(2)根据DA=DC,三角形的周长公式计算.
解:(1)∵∠BAC=60°,∠B=80°,
∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,
∵DE垂直平分AC,∴DA=DC.
∴∠DAC=∠C=40°,
∴∠BAD=60°-40°=20°.
(2)∵DE垂直平分AC,
∴AD=CD,
∴AB+AD+BD=AB+CD+BD=AB+BC=10+12=22,
∴△ABD的周长为22.
16、(1)y=-x+6;(2)M(0,);(3)(0,-2)或(0,-6).
【解析】
(1)设AB的函数解析式为:y=kx+b,把A、B两点的坐标代入解方程组即可.
(2)作点B关于y轴的对称点B′,则B′点的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,根据A、B′两点坐标可知直线AB′的解析式,即可求出M点坐标,(3)分别考虑∠MAB为直角时直线MA的解析式,∠ABM′为直角时直线BM′的解析式,求出M点坐标即可,
【详解】
(1)设直线AB的函数解析式为y=kx+b,则 解方程组得
直线AB的函数解析式为y= -x+6,
(2)如图作点B关于y轴的对称点B′,则点B′的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,设直线AB′的解析式为y=mx+n,则 ,
解方程组得
所以直线AB′的解析式为,
当x=0时,y=,
所以M点的坐标为(0,),
(3)有符合条件的点M,理由如下:
如图:因为△ABM是以AB为直角边的直角三角形,
当∠MAB=90°时,直线MA垂直直线AB,
∵直线AB的解析式为y=-x+6,
∴设MA的解析式为y=x+b,
∵点A(4,2),
∴2=4+b,
∴b=-2,
当∠ABM′=90°时,BM′垂直AB,
设BM′的解析式为y=x+n,
∵点B(6,0)
∴6+n=0
∴n=-6,
即有满足条件的点M为(0,-2)或(0,-6).
本题考查了待定系数法求一次函数解析式,一次函数关系式为:y=kx+b(k≠0),要有两组对应量确定解析式,即得到k,b的二元一次方程组.熟练掌握相关知识是解题关键.
17、(1)证明见解析;(2)△PQR为等腰三角形,理由见解析.
【解析】
(1)正方形对角线AC是对角的角平分线,可以证明△ADP≌△DCG,即可求证DP=CG.
(2)由(1)的结论可以证明△CEQ≌△CEG,进而证明∠PQR=∠QPR.故△PQR为等腰三角形.
【详解】
(1)证明:在正方形ABCD中,
AD=CD,∠ADP=∠DCG=90°,
∠CDG+∠ADH=90°,
∵DH⊥AP,∴∠DAH+∠ADH=90°,
∴∠CDG=∠DAH,
∴△ADP≌△DCG,
∵DP,CG为全等三角形的对应边,
∴DP=CG.
(2)△PQR为等腰三角形.
∵∠QPR=∠DPA,∠PQR=∠CQE,CQ=DP,由(1)的结论可知
∴CQ=CG,∵∠QCE=∠GCE,CE=CE,
∴△CEQ≌△CEG,即∠CQE=∠CGE,
∴∠PQR=∠CGE,
∵∠QPR=∠DPA,
∴∠PQR=∠QPR,
所以△PQR为等腰三角形.
18、(1)甲每小时加工零件50个,乙每小时加工零件40个(2)乙至少加工8天才能加工完这批零件.
【解析】
(1)根据“甲加工150个零件所用的时间与乙加工120个零件所用的时间相等”可得出相等关系,从而只需不是出™各自的时间就可以了;(2)根据题目条件列出不等式求出加工天数.
【详解】
解:(1)设乙每小时加工零件个 ,则甲每小时加工零件个
由题可得:
解得:
经检验 是原方程的解,则
答:甲每小时加工零件50个,乙每小时加工零件40个.
(2)设乙至少加工天才能加工完这批零件,则
解之得:
答:乙至少加工8天才能加工完这批零件.
本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
试题分析:延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.
解:连接AE,并延长交CD于K,
∵AB∥CD,
∴∠BAE=∠DKE,∠ABD=∠EDK,
∵点E、F、G分别是BD、AC、DC的中点.
∴BE=DE,
在△AEB和△KED中,
,
∴△AEB≌△KED(AAS),
∴DK=AB,AE=EK,EF为△ACK的中位线,
∴EF=CK=(DC﹣DK)=(DC﹣AB),
∵EG为△BCD的中位线,∴EG=BC,
又FG为△ACD的中位线,∴FG=AD,
∴EG+GF=(AD+BC),
∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,
∴EG+GF=6,FE=3,
∴△EFG的周长是6+3=1.
故答案为:1.
点评:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
20、y=
【解析】
先根据条件算出注满容器还需注水200m3 , 根据注水时间=容积÷注水速度,据此列出函数式即可.
【详解】
解:容积300m3,原有水100m3,还需注水200m3,由题意得:y=.
本题考查了反比例函数的实际应用,理清实际问题中的等量关系是解题的关键.
21、5:1(或1:5)
【解析】
先根据菱形的性质求出边长,再根据直角三角形的性质求出,得出,即可得出结论.
【详解】
解:如图所示:四边形是菱形,菱形的周长为8,
,,
,,
,
,
,
故答案为:5:1(或1:5).
本题考查了菱形的性质、含角的直角三角形的判定;熟练掌握菱形的性质和含角的直角三角形的判定是解决问题的关键.
22、﹣1.
【解析】
解:设D(m,).∵双曲线经过Rt△OAB斜边OA的中点D,∴A(1m,).∵S△OAC=3,∴•(﹣1m)• +k=3,∴k=﹣1.故答案为:﹣1.
点睛:本题考查了反比例函数系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
23、0.1.
【解析】
求出平均数,再利用方差计算公式求出即可:
根据表格得,平均数=(5×3+1×4+7×3)÷10=1.
∴方差=.
【详解】
请在此输入详解!
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)1.
【解析】
(1)如图,连接,交于点,作直线交于点,点即为所求;
(2)求出,即可解决问题.
【详解】
(1)如图,点即为所求;
(2),,
,
,
,
,
四边形是平行四边形,
,,
平行四边形的周长为1.
本题考查作图——复杂作图,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题.
25、(1)见解析 (2)见解析 (3)
【解析】
(1)连接,利用同角的余角相等,得到,利用平行四边形的判定和性质得结论;
(2)先证明四边形是平行四边形,再利用直角三角形斜边的中线等于斜边的一半说明邻边相等,证明该四边形是菱形;
(3)由平行线的性质得出,由正方形的性质得出,,即可得出结论.
【详解】
解:(1)证明:,
,
,,
,,
,
,
四边形是平行四边形,
;
(2)解:四边形是菱形.理由如下:
由(1)知:四边形是平行四边形,
,,
在中,点是的中点,
,
又,
,
四边形是平行四边形,
,
四边形是菱形.
(3)解:,理由如下:
,
,
四边形是正方形,
,,
.
本题是四边形综合题目,考查了平行四边形的判定与性质、菱形的判定、正方形的性质、直角三角形斜边上的中线性质、平行线的性质等知识;本题综合性强,熟练掌握平行四边形的判定与性质是解题的关键.
26、(1)甲种图书每本的进价为1元,乙种图书每本的进价是45元;(2)最多购进甲种图书2本.
【解析】
试题分析:(1)设乙种图书每本的进价为x元,则甲种图书每本的进价是(x+20)元,根据花780元购进甲图书的数量与花540元购进乙图书的数量相同,列方程求解;
(2)设购进甲种图书m本,则购进乙种图书为(70-m)本,根据总购书费用不超过4000元,列不等式求解.
试题解析:
解:(1)设乙种图书每本的进价为x元,则甲种图书每本的进价是(x+20)元,
由题意得, =,
解得:x=45,
经检验,x=45是原分式方程的解,且符合题意,
则x+20=1.
答:甲种图书每本的进价为1元,乙种图书每本的进价是45元;
(2)设购进甲种图书m本,则购进乙种图书为(70﹣m)本,
由题意得,1m+45(70﹣m)≤4000,
解得:m≤2.5,
∵m为整数,且取最大值,
∴m=2.
答:最多购进甲种图书2本.
点睛:本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系或不等关系,列方程或不等式求解.
题号
一
二
三
四
五
总分
得分
批阅人
30
60
81
50
44
110
130
146
80
100
60
80
120
140
75
81
10
30
81
92
课外阅读时间
等级
人数
3
8
平均数
中位数
众数
80
81
植树株数(株)
5
6
7
小组个数
3
4
3
2024-2025学年江苏省江阴市第一初级中学数学九上开学综合测试模拟试题【含答案】: 这是一份2024-2025学年江苏省江阴市第一初级中学数学九上开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省江阴初级中学数学九上开学教学质量检测试题【含答案】: 这是一份2024-2025学年江苏省江阴初级中学数学九上开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省东台市实验中学教育集团数学九年级第一学期开学达标检测试题【含答案】: 这是一份2024-2025学年江苏省东台市实验中学教育集团数学九年级第一学期开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。