2024-2025学年江苏省江阴市第一初级中学数学九上开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,是正内一点,,,,将线段以点为旋转中心逆时针旋转得到线段,下列结论:①可以由绕点逆时针旋转得到;②点与点的距离为8;③;④;其中正确的结论是( )
A.①②③B.①③④C.②③④D.①②
2、(4分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )
A.B.C.5D.4
3、(4分)下列判断中,错误的是( )
A.方程是一元二次方程B.方程是二元二次方程
C.方程是分式方程D.方程是无理方程
4、(4分)如图,将△ABC 绕点 A 按顺时针方向旋转 120°得到△ADE,点 B 的对应点是点 E,点 C 的对应点是点 D,若∠BAC=35°,则∠CAE 的度数为( )
A.90°B.75°C.65°D.85°
5、(4分)等式成立的x的取值范围在数轴上可表示为( )
A.B.C.D.
6、(4分)直线的截距是 ( )
A.—3B.—2C.2D.3
7、(4分)下列函数中,y总随x的增大而减小的是( )
A.y=4xB.y=﹣4xC.y=x﹣4D.y=x2
8、(4分)已知2是关于x的方程x2﹣2ax+4=0的一个解,则a的值是( )
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知矩形,,,点为中点,在上取一点,使的面积等于,则的长度为_______.
10、(4分)将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.
11、(4分)为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.
12、(4分)小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.
13、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知y-2与x+3成正比例,且当x=-4时,y=0,求当x=-1时,y的值.
15、(8分)计算
(1) (2)
(3)解下列方程组 (4)解下列方程组
16、(8分)由于受到手机更新换代的影响,某手机店经销的甲型号手机二月份售价比一月份售价每台降价500元.如果卖出相同数量的甲型号手机,那么一月份销售额为9万元,二月份销售额只有8万元.
(1)一月份甲型号手机每台售价为多少元?
(2)为了提高利润,该店计划三月份加入乙型号手机销售,已知甲型号每台进价为3500元,乙型号每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?
17、(10分)如图,在四边形中,,,,是的中点.点以每秒个单位长度的速度从点出发,沿向点运动;点同时以每秒个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.
18、(10分)随着信息技术的高速发展,计算机技术已是每位学生应该掌握的基本技能.为了提高学生对计算机的兴趣,老师把甲、乙两组各有10名学生,进行电脑汉字输入速度比赛,各组参赛学生每分钟输入汉字个数统计如下表:
(1)请你填写下表中甲班同学的相关数据.
(2)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?
(3)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)根据如图所示的程序,当输入x=3时,输出的结果y=________.
20、(4分)在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________
21、(4分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线 与此正方形的边有交点,则a的取值范围是________.
22、(4分)一次函数y=kx-2的函数值y随自变量x的增大而减小,则k的取值范围是__.
23、(4分)如图,二次函数的图象与x轴交于A,B两点,与y轴交于点C,且,则下列结论:;;;其中正确结论的序号是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E是AB的中点.已知AC=8cm,BD=6cm,求OE的长.
25、(10分)如图,在平行四边形中,,点为的中点,连接并延长与的延长线相交于点,连接.
(1)求证:;
(2)求证:是的平分线.
26、(12分)如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
连接OO′,如图,先利用旋转的性质得BO′=BO=8,∠OBO′=60°,再利用△ABC为等边三角形得到BA=BC,∠ABC=60°,则根据旋转的定义可判断△BO′A可以由△BOC绕点B逆时针旋转60°得到;接着证明△BOO′为等边三角形得到∠BOO′=60°,OO′=OB=8;根据旋转的性质得到AO′=OC=10,利用勾股定理的逆定理证明△AOO′为直角三角形,∠AOO′=90°,于是得到∠AOB=150°;最后利用S四边形AOBO′=S△AOO′+S△BOO′可计算出S四边形AOBO′即可判断.
【详解】
连接OO′,如图,
∵线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,
∴BO′=BO=8,∠OBO′=60°,
∵△ABC为等边三角形,
∴BA=BC,∠ABC=60°,
∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,则①正确;
∵△BOO′为等边三角形,
∴OO′=OB=8,所以②正确;
∵△BO′A可以由△BOC绕点B逆时针旋转60°得到,
∴AO′=OC=10,
在△AOO′中,
∵OA=6,OO′=8,AO′=10,
∴OA2+OO′2=AO′2,
∴△AOO′为直角三角形,∠AOO′=90°,
∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,所以③正确;
,
故④错误,
故选:A.
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.
2、A
【解析】
根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.
【详解】
解:∵四边形ABCD是菱形,设AB,CD交于O点,
∴AO=OC,BO=OD,AC⊥BD,
∵AC=8,DB=6,
∴AO=4,OB=3,∠AOB=90°,
由勾股定理得:AB==5,
∵S菱形ABCD=×AC×BD=AB×DH,
∴×8×6=5×DH,
∴DH=,
故选A.
本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=×AC×BD=AB×DH是解此题的关键.
3、D
【解析】
可以先判断各个选项中的方程是什么方程,从而可以解答本题.
【详解】
解:A、x(x-1)=0是一元二次方程,故A正确;
B、xy+5x=0是二元二次方程,故B正确;
C、是分式方程,故C正确;
D、是一元二次方程,故D错误.
故选D.
本题考查了各类方程的识别.
4、D
【解析】
由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.
【详解】
∵将△ABC绕点A按顺时针方向旋转120°得到△ADE
∴∠BAE=120°且∠BAC=35°
∴∠CAE=85°
故选D.
本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.
5、B
【解析】
根据二次根式有意义的条件即可求出的范围.
【详解】
由题意可知: ,
解得:,
故选:.
考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.
6、A
【解析】
由一次函数y=kx+b在y轴上的截距是b,可求解.
【详解】
∵在一次函数y=2x−1中,b=−1,
∴一次函数y=2x−1的截距b=−1.
故选:A.
本题考查了一次函数图象上点的坐标特征.一次函数图象上的点的坐标,一定满足该函数的关系式.
7、B
【解析】
结合各个选项中的函数解析式,根据相关函数的性质即可得到答案.
【详解】
y=4x中y随x的增大而增大,故选项A不符题意,
y=﹣4x中y随x的增大而减小,故选项B符合题意,
y=x﹣4中y随x的增大而增大,故选项C不符题意,
y=x2中,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,故选项D不符合题意,
故选B.
本题考查了二次函数的性质、一次函数的性质、正比例函数的性质,解答本题的关键是明确题意,利用一次函数和二次函数的性质解答.
8、B
【解析】
把x=1代入方程x1-1ax+4=0,得到关于a的方程,解方程即可.
【详解】
∵x=1是方程x1-1ax+4=0的一个根,
∴4-4a+4=0,
解得a=1.
故选B.
本题考查了一元二次方程的解的概念,解题时注意:使方程两边成立的未知数的值叫方程的解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设DP=x,根据,列出方程即可解决问题.
【详解】
解:设DP=x
∵, AD=BC=6,AB=CD=8,
又∵点为中点
∴BQ=CQ=3,
∴18=48− ⋅x⋅6− (8−x)⋅3−⋅8⋅3,
∴x=4,
∴DP=4
故答案为4cm
本题考查了利用矩形的性质来列方程求线段长度,正确列出方程是解题的关键.
10、y=-x+1.
【解析】
根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.
【详解】
解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,
∵经过点(2,1),
∴1=2a+1,解得:a=-1,
∴平移后的直线的解析式为y=-x+1,
故答案为:y=-x+1.
本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.
11、2.40,2.1.
【解析】
∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.
∴它们的中位数为2.40,众数为2.1.
故答案为2.40,2.1.
点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.
12、79
【解析】
解:本学期数学总评分=70×30%+80×30%+85×40%=79(分)
故答案为79
13、1
【解析】
由已知可得Rt△ABC是等腰直角三角形,且,得出CD=AD=BD=AB=1.
【详解】
∵CA=CB.∠ACB=90°,CD⊥AB,
∴AD=DB,
∴CD=AB=1,
故答案为1.
本题考查了等腰直角三角形的性质,直角三角形斜边中线的性质,解题的关键是灵活运用等腰直角三角形的性质求边的关系.
三、解答题(本大题共5个小题,共48分)
14、2.
【解析】
利用正比例函数的定义,设y-1=k(x+3),然后把已知的对应值代入求出k得到y与x之间的函数关系式;计算自变量为-1对应的y的值即可
【详解】
由题意,设 y-1=k(x+3)(k≠0),
得:0-1=k(-4+3).
解得:k=1.
所以当x=-1时,y=1(-1+3)+1=2.
即当x=-1时,y的值为2.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b,将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.
15、(1);(2);(3);(4).
【解析】
(1)先计算乘方,然后同底数幂乘法,最后合并即可;
(2)原式利用平方差和完全平方公式,化简计算即可;
(3)利用代入消元法,即可求出方程组的解;
(4)方程先通过化简,然后利用加减消元法解方程即可.
【详解】
解:(1)原式=
=
=;
(2)原式=
=
=
=;
(3),
由②代入①,得:,
解得:,
把代入②,解得:,
∴方程组的解为:;
(4)
化简得:,
由,得:,
解得:,
把代入①,解得:,
∴方程组的解为:;
此题考查了整式的混合运算和解二元一次方程组,熟练掌握运算法则和解二元一次方程组的方法是解本题的关键.
16、(1)一月份甲型号手机每台售价为4500元;(2)共有5种进货方案.
【解析】
(1)设一月份甲型号手机每台售价为x元,则二月份甲型号手机每台售价为(x-500)元,根据数量=总价÷单价结合一二月份甲型号手机的销售量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设购进甲型号手机m台,则购进乙型号手机(20-m)台,根据总价=单价×数量结合总价不多于7.6万元且不少于7.4万元,即可得出关于m的一元一次不等式组,解之取其正值即可得出结论.
【详解】
解:(1)设一月份甲型号手机每台售价为x元,则二月份甲型号手机每台售价为(x﹣500)元,
根据题意得:,
解得:x=4500,
经检验,x=4500是所列分式方程的解,且符合题意.
答:一月份甲型号手机每台售价为4500元.
(2)设购进甲型号手机m台,则购进乙型号手机(20﹣m)台,
根据题意得:,
解得:8≤m≤1.
∵m为正整数,
∴m=8或9或10或11或1.
∴共有5种进货方案.
本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.
17、当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.
【解析】
分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.
【详解】
解:是的中点,
,
①当运动到和之间,设运动时间为,则得:
,
解得:;
②当运动到和之间,设运动时间为,则得:
,
解得:,
当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.
此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.
18、(1)填写表格见解析;(2)乙组成绩更好一些;(3)①从众数看,甲班众数成绩优于乙班;②从中位数看,甲班每分钟输入135字以上的人数比乙班多;③从平均数看,两班同学输入的总字数一样,成绩相当;④从方差看,甲班成绩波动小,比较稳定;⑤从最好成绩看,乙班成绩优于甲班.(至少从两个角度进行评价).
【解析】
(1)根据众数、中位数、平均数以及方差的计算公式分别进行解答即可;
(2)根据表中给出的数据,得出甲组优秀的人数有3人,乙组优秀的人数有4人,从而得出乙组成绩更好一些;
(3)从中位数看,甲组每分钟输入135字以上的人数比乙组多;从方差看,S2甲<S2乙;甲组成绩波动小,比较稳定.
【详解】
解:(1)如下表:
(2)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人
∴乙组成绩更好一些
(3)①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,甲班众数成绩优于乙班;
②从中位数看,甲班每分钟输入135字以上的人数比乙班多;
③从平均数看,两班同学输入的总字数一样,成绩相当;
④从方差看,甲的方差小于乙的方差,则甲班成绩波动小,比较稳定;
⑤从最好成绩看,乙班速度最快的选手比甲班多1人,若比较前3~4名选手的成绩,则乙班成绩优于甲班.(至少从两个角度进行评价).
此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据自变量与函数值的对应关系,可得相应的函数值.
【详解】
当x=3时,y=﹣3+5=1.
故答案为:1.
本题考查了函数值,将自变量的值代入相应的函数关系式是解题的关键.
20、20或22
【解析】
根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.
【详解】
根据题意可得矩形的长为7
当形成的直角等腰三角形的直角边为3时,则矩形的宽为3
当形成的直角等腰三角形的直角边为4时,则矩形的宽为4
矩形的宽为3或4
周长为或
故答案为20或22
本题主要考查等腰直角三角形的性质,关键在于确定宽的长.
21、-1≤a≤
【解析】
根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.
【详解】
解:反比例函数经过点A和点C.
当反比例函数经过点A时,即=3,
解得:a=±(负根舍去);
当反比例函数经过点C时,即=3,
解得:a=1±(负根舍去),
则-1≤a≤.
故答案为: -1≤a≤.
本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
22、k<1
【解析】
根据一次函数图象的增减性来确定k的符号即可.
【详解】
解:∵一次函数y=kx-2的函数值y随自变量x的增大而减小,
∴k<1,
故答案为k<1.
本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠1)中,当k>1时,y随x的增大而增大;当k<1时,y随x的增大而减小.
23、①③④
【解析】
(1)∵抛物线开口向下,
∴,
又∵对称轴在轴的右侧,
∴ ,
∵抛物线与轴交于正半轴,
∴ ,
∴,即①正确;
(2)∵抛物线与轴有两个交点,
∴,
又∵,
∴,即②错误;
(3)∵点C的坐标为,且OA=OC,
∴点A的坐标为,
把点A的坐标代入解析式得:,
∵,
∴,即③正确;
(4)设点A、B的坐标分别为,则OA=,OB=,
∵抛物线与轴交于A、B两点,
∴是方程的两根,
∴,
∴OA·OB=.即④正确;
综上所述,正确的结论是:①③④.
二、解答题(本大题共3个小题,共30分)
24、OE=cm
【解析】
根据菱形的性质及三角形中位线定理解答.
【详解】
∵ABCD是菱形,∴OA=OC,OB=OD,OB⊥OC.
又∵AC=8cm,BD=6cm,∴OA=OC=4cm,OB=OD=3cm.
在直角△BOC中,由勾股定理得:BC5(cm).
∵点E是AB的中点,∴OE是△ABC的中位线,∴OEcm.
本题考查了菱形的性质及三角形中位线定理.求出菱形的边长是解题的关键.
25、(1)见解析;(2)见解析;
【解析】
(1)根据平行四边形的性质及全等三角形的判定定理即可证明;
(2)根据全等三角形的性质及等腰三角形三线合一即可求解.
【详解】
(1)∵四边形是平行四边形,
∴,
∴.
又∵为中点,
∴.
在和中,
∴.
(2)由(1)知,
∴.
∵四边形是平行四边形
∴,.
.
又∴.
即.
∴是等腰三角形
∵.
∴是边上的中线.
由等腰三角形三线合一性质,得
是的平分线.
此题主要考查平行四边形的性质,解题的关键是熟知全等三角形的判定与性质、等腰三角形三线合一.
26、见解析.
【解析】
首先判定四边形OAEB是平行四边形,再由菱形的性质得出∠AOB=90°,从而判定四边形OAEB是矩形.
【详解】
证明:∵,,
∴四边形是平行四边形,
又∵四边形是菱形,
∴,
∴,
∴平行四边形是矩形.
∴四边形是矩形
本题考查了矩形的判定,菱形的性质, 掌握矩形的判定和菱形的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
输入汉字(个)
132
133
134
135
136
137
甲组人数(人)
1
0
1
5
2
1
乙组人数(人)
0
1
4
1
2
2
组
众数
中位数
平均数()
方差()
甲组
乙组
134
134.5
135
1.8
组
众数
中位数
平均数()
方差()
甲组
135
135
135
1.6
乙组
134
134.5
135
1.8
2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省东台市实验中学数学九上开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省常州市金坛区白塔中学数学九上开学综合测试试题【含答案】: 这是一份2024-2025学年江苏省常州市金坛区白塔中学数学九上开学综合测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省常熟市第三中学数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年江苏省常熟市第三中学数学九上开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。