|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年江苏省南京市金陵汇文中学数学九上开学监测模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年江苏省南京市金陵汇文中学数学九上开学监测模拟试题【含答案】01
    2024-2025学年江苏省南京市金陵汇文中学数学九上开学监测模拟试题【含答案】02
    2024-2025学年江苏省南京市金陵汇文中学数学九上开学监测模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省南京市金陵汇文中学数学九上开学监测模拟试题【含答案】

    展开
    这是一份2024-2025学年江苏省南京市金陵汇文中学数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,方格纸中小正方形的边长为1,,两点在格点上,要在图中格点上找到点,使得的面积为2,满足条件的点有( )
    A.无数个B.7个C.6个D.5个
    2、(4分)下列各式:,,,,(x+y)中,是分式的共有( )
    A.1个B.2个C.3个D.4个
    3、(4分)在Rt△中,,,则( )
    A.9B.18C.20D.24
    4、(4分)一次函数的图象经过( )
    A.一、二、三象限B.一、二、四象限
    C.二、三、四象限D.一、三、四象限
    5、(4分)已知点(-2,y1),(-1,y2),(4,y3)在函数y=的图象上,则( )
    A.y26、(4分)如图,O为坐标原点,菱形OABC的顶点A的坐标为,顶点C在轴的负半轴上,函数的图象经过顶点B,则的值为( )
    A.B.C.D.
    7、(4分)如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( )
    A.6B.11C.12D.18
    8、(4分)若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是( )
    A.k>3B.0<k≤3C.0≤k<3D.0<k<3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知点A(),B()是一次函数图象上的两点,当时,__.(填“>”、“=”或“<”)
    10、(4分)计算:______________
    11、(4分)若数据8,9,7,8,x,3的平均数是7,则这组数据的众数是________.
    12、(4分)已知函数,则自变量x的取值范围是___________________.
    13、(4分)已知是一元二次方程x2-4x+c=0的一个根,则方程的另一个根是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)树叶有关的问题
    如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。
    某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:
    表1 A树、B树、C树树叶的长宽比统计表
    表1 A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表
    A树、B树、C树树叶的长随变化的情况
    解决下列问题:
    (1)将表2补充完整;
    (2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”
    ②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”
    请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;
    (3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。
    15、(8分)某中学八年级组织了一次“汉字听写比赛”,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中A等级得分为100分,B等级得分为85分,C等级得分为75分,D等级得分为60分,语文教研组将八年级一班和二班的成绩整理并绘制成如下的统计图,请根损换供的信息解答下列问题.
    (1)把一班比赛成统计图补充完整;
    (2)填表:
    表格中:a=______,b=______,c=_______.
    (3)请从以下给出的两个方面对这次比赛成绩的结果进行分析:
    ①从平均数、众数方面来比较一班和二班的成绩;
    ②从B级以上(包括B级)的人数方面来比较-班和二班的成绩.
    16、(8分)已知:如图,在中,延长到,使得.连结,.
    (1)求证:;
    (2)请在所给的图中,用直尺和圆规作点(不同于图中已给的任何点),使以,,,为顶点的四边形是平行四边形(只作一个,保留痕迹,不写作法).
    17、(10分)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图):在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现在计划在休息区内摆放占地面积为31.5平方米“背靠背”休闲椅(如图),并要求休闲椅摆放在东西方向上或南北方向上,请通过计算说明休息区内最多能摆放几张这样的休闲椅.
    18、(10分)如图,在Rt△ABC中,∠C=90°,AC=5,AB=13,求BC.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)化简分式:=_____.
    20、(4分)如图所示的围棋盘放在平面直角坐标系内,黑棋A的坐标为(1,2),那么白棋B的坐标是_____.
    21、(4分)计算:_________.
    22、(4分)甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是_____.(填“甲”或“乙”)
    23、(4分) 若10个数的平均数是3,方差是4,现将这10个数都扩大2倍,则这组新数据的方差是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.
    (1)求这两种品牌计算器的单价;
    (2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;
    (3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.
    25、(10分)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.
    (1)如图1所示,求证: 且
    (2)将△COD绕点O旋转到图2、图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论
    26、(12分) (1)因式分解:; (2)计算:.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    如解图中的C1、D,连接C1D,根据勾股定理即可求出C1D和AB,然后根据三线合一即可求出S△C1AB=2,然后根据平行线之间的距离处处相等即可求出另外两个点C2 、C3,然后同理可找出C4、C5 、C6,从而得出结论.
    【详解】
    解:设如下图所示中的两个格点为C1、D,连接C1D
    根据勾股定理可得C1D=AD=BD=,AB=
    ∵C1A= C1B,点D为AB的中点
    ∴C1D⊥AB
    ∴S△C1AB=AB·C1D=2
    ∴此时点C1即为所求
    过点C1作AB的平行线,交如图所示的格点于C2 、C3,根据平行线之间的距离处处相等,此时C2 、C3也符合题意;
    同理可得:S△C4AB=2,
    ∴点C4即为所求,过点C4作AB的平行线,交如图所示的格点于C5 、C6,根据平行线之间的距离处处相等,此时C4 、C5也符合题意.
    满足条件的点C共有6个
    故选C.
    此题考查的是勾股定理和网格问题,掌握用勾股定理解直角三角形和三线合一的性质是解决此题的关键.
    2、C
    【解析】
    判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
    【详解】
    ,,分母中含有字母,因此是分式;
    ,的分母中均不含有字母,因此它们是整式,而不是分式.
    故分式有3个.
    故选C.
    本题主要考查了分式的定义,注意判断一个式子是否是分式的条件是:分母中是否含有未知数,如果不含有字母则不是分式.
    3、B
    【解析】
    根据勾股定理即可得到结论.
    【详解】
    ∵Rt△中,,,
    ∴2=18
    故选B.
    此题主要考查勾股定理,解题的关键是熟知勾股定理的内容.
    4、D
    【解析】
    根据一次函数的解析式得出k及b的符号,再根据一次函数的性质进行解答即可.
    【详解】
    解:∵一次函数中k=2>0,b=-4<0,
    ∴此函数的图象经过一、三、四象限.
    故选:D.
    本题考查的是一次函数的性质,正确理解一次函数y=kx+b(k≠0)的图象与k,b的关系是解题的关键.
    5、A
    【解析】
    把x的取值分别代入函数式求y的值比较即可.
    【详解】
    解:由 y=得,y1==-4, y2==-8, y3==2 ,∴y2 故答案为:A
    本题考查了函数值的大小比较,已知自变量值比较函数值有3种方法,①根据函数解析式求出函数值直接比较;②根据函数性质比较;③画出函数图像进行比较,其中①是最容易掌握的方法.
    6、C
    【解析】
    ∵A(﹣3,4),
    ∴OA==5,
    ∵四边形OABC是菱形,
    ∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,
    故B的坐标为:(﹣8,4),
    将点B的坐标代入得,4=,解得:k=﹣1.故选C.
    考点:菱形的性质;反比例函数图象上点的坐标特征.
    7、C
    【解析】
    试题分析:这个正多边形的边数:360°÷30°=12,故选C.
    考点:多边形内角与外角.
    8、A
    【解析】
    试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像的性质:可知k>0,b>0,在一二三象限;k>0,b<0,在一三四象限;k<0,b>0,在一二四象限;k<0,b<0,在二三四象限.因此由图象经过第二、三、四象限,可判断得3-k<0,-k<0,解之得k>0,k>3,即k>3.
    故选A
    考点:一次函数的图像与性质
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、<
    【解析】
    试题解析:∵一次函数y=-1x+5中k=-1<0,
    ∴该一次函数y随x的增大而减小,
    ∵x1>x1,
    ∴y1<y1.
    10、3
    【解析】
    根据负整数指数幂,零指数幂进行计算即可解答
    【详解】
    原式=2×2-1=3
    故答案为:3
    此题考查负整数指数幂,零指数幂,掌握运算法则是解题关键
    11、7,1
    【解析】
    由题意知,,
    解得x=7,
    这组数据中7,1各出现两次,出现次数最多,
    故众数是7,1.
    12、
    【解析】
    分析:根据函数的自变量取值范围的确定方法,从分式和二次根式有意义的条件列不等式求解即可.
    详解:由题意可得
    解得x≥-2且x≠3.
    故答案为:x≥-2且x≠3.
    点睛:此题主要考查了函数的自变量的取值范围,关键是明确函数的构成:二次根式的被开方数为非负数,分式的分母不等于0等条件.
    13、
    【解析】
    【分析】由于已知方程的一根,并且一次项系数也已知,根据两根之和公式可以求出方程的另一根.
    【详解】设方程的另一根为x1,由x1+2-=4,得x1=2+.
    故答案为2+.
    【点睛】根据方程中各系数的已知情况,合理选择根与系数的关系式是解决此类题目的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)2.1,2.0;(2)小张同学的说法是合理的,小李学同的说法是不合理;(3)B树;
    【解析】
    (1)根据中位数和众数的定义,由表中的数据求出B树树叶的长宽比的中位数和众数即可;
    (2)根据表中数据,求出C树树叶的长宽比的近似值,从而判断小张的说法,根据所给树叶的长宽比,判断小李的说法即可;
    (3)根据树叶的长和宽在图中用★标出该树叶,根据树叶的长宽比判断该树叶来自哪棵树即可.
    【详解】
    解(1)将这10片B树树叶的长宽比从小到大排列为:1.9,1.9,2.0,2.0,2.0,2.2,2.3,2.3,2.4,2.5,处在中间位置的两个数为2.0,2.2,
    ∴中位数为(2.0+2.2)÷2=2.1;
    ∵2.0出现了3次,出现的次数最多,
    ∴众数为2.0.
    (2)小张同学的说法是合理的,小李同学的说法是不合理的.
    理由如下:由表中的数据可知C树叶的长宽比近似于1,故小张的说法正确;
    由树叶的长度和宽度可知该树叶的长宽比近似于6,所以该树叶是A树的树叶,故小李的说法错误;
    (3)图1中,★表示这片树叶的数据,这片树叶来自B树;
    这块树叶的长宽比为103:52≈2,所以这片树叶来自B树.

    本题主要考查了统计表的应用,平均数,中位数,众数,方差,用样本估计总体,熟练掌握中位数和众数的定义是解决此题的关键.
    15、 (1) 统计图补充完整如图所示见解析;(2)二班的平均数为:a=82.8 ,一班的中位数为:b=85, 二班的众数为:c=100 ; (3)①从平均数和众数的角度来比较二班的成绩更好;②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
    【解析】
    (1)根据题意和表格中的数据可以求得一班C等级的学生数,从而可以解答本题;
    (2)根据表格中的数据可以求得一班的平均数和中位数,以及二班的众数;
    (3)根据表格中的数据,可以从两方面比较一班和二班成绩的情况.
    【详解】
    解:(1)一班中C级的有25-6-12-5=2人
    如图所示
    (2) 一班的平均数为:a= =82.8,
    一班的中位数为:b=85
    二班的众数为:c=100 ;
    (3)①从平均数和众数的角度来比较二班的成绩更好;
    ②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
    故答案为(1) 统计图补充完整如图所示见解析;(2)二班的平均数为:a=82.8 ,一班的中位数为:b=85, 二班的众数为:c=100 ; (3)①从平均数和众数的角度来比较二班的成绩更好;②从B级以上(包括B级)的人数的角度来比较一班的成绩更好.
    本题考查条形统计图、扇形统计图、众数、中位数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    16、(1)详见解析;(2)详见解析
    【解析】
    (1)由四边形ABCD是平行四边形,得到AB=CD,AB∥CD,易得BE∥CD,由于BE=AB可得BE=CD,推出四边形BECD是平行四边形,再运用平行四边形的性质解答即可;
    (2)分别以C,E为圆心,以BE,BC的长为半径画弧,两弧交于一点F,则点F即为所求.
    【详解】
    (1)证明:∵中,
    ∴,.
    又,
    ,,
    四边形是平行四边形,

    (2)如图:
    本题考查了平行四边形的判定和性质,灵活运用平行四边形的判定和性质定理是解题的关键.
    17、休息区只能摆放张这样的休闲椅.
    【解析】
    先根据正方形的空地面积求出正方形空地的边长,根据儿童游乐场的面积求出儿童游乐场的边长,即可得出休息区东西向和南北向的边长,已知休闲椅的长和宽,利用无理数估算大小的方法,即可知休息区只能摆放几张这样的休闲椅.
    【详解】
    如图3:由题得,
    正方形空地的边长为(米)
    儿童游乐场的边长为 (米)
    ∵ (米)
    ∴休息区东西向和南北向的边长分别为米,米


    ∴休闲椅只能东西方向摆放,且只能摆放一排


    ∴休闲椅在东西方向上可并列摆放张
    综上所述,休息区只能摆放张这样的休闲椅
    本题考查了正方形的性质,已知面积可求得边长,题中应用了无理数大小的估算,要想准确的估算出无理数的取值范围需要记住一些常用数的平方,一般情况下从1到20整数的平方都应牢记.
    18、12
    【解析】
    在Rt△ABC中,∠C=90°,AC=5,AB=13,根据勾股定理,即可求出BC.
    【详解】
    解:∵在Rt△ABC中,∠C=90°,



    又∵AC=5,AB=13,

    =
    =12
    此题主要考查勾股定理的运用.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-
    【解析】
    将分子变形为﹣(x﹣y),再约去分子、分母的公因式x﹣y即可得到结论.
    【详解】
    ==﹣.
    故答案为﹣.
    本题主要考查分式的约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
    20、(﹣1,﹣2) .
    【解析】
    1、本题主要考查的是方格纸中已知一点后直角坐标系的建立:先确定单位长度,再根据已知点的坐标确立原点,然后分别确定x轴和y轴.
    2、本题中只要确立了直角坐标系,点B的坐标就可以很快求出.
    【详解】
    由题意及点A的坐标可确定如图所示的直角坐标系,
    则B点和A点关于原点对称,所以点B的坐标是(-1,-2).
    本题考查了建立直角坐标系,牢牢掌握该法是解答本题的关键.
    21、
    【解析】
    先计算二次根式的乘法,然后进行化简,最后合并即可.
    【详解】
    原式.
    故答案为:.
    本题考查了二次根式的混合运算,掌握各种知识点的运算法则是解答本题的关键.
    22、乙.
    【解析】
    根据气温统计图可知:乙的平均气温比较稳定,波动小,由方差的意义知,波动小者方差小.
    【详解】
    观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
    则乙地的日平均气温的方差小,
    故S2甲>S2乙.
    故答案是:乙.
    考查方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    23、1
    【解析】
    根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.
    【详解】
    解:∵将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,
    ∴新数据的方差是4×4=1,
    故答案为:1.
    本题考查了方差:一般地设有n个数据,x1,x2,…xn,若每个数据都扩大相同的倍数后,方差则变为这个倍数的平方倍.
    二、解答题(本大题共3个小题,共30分)
    24、(1)30元,32元(2)(3)当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;当购买数量为30个时,购买两种品牌的计算机花费相同;当购买数量超过30个时,购买B品牌的计算机更合算.
    【解析】
    (1)根据“购买2个A品牌和3个B品牌的计算器共需156元”和“购买3个A品牌和1个B品牌的计算器共需122元”列方程组求解即可.
    (2)根据题意分别列出函数关系式.
    (3)由、、列式作出判断.
    【详解】
    解:(1)设A品牌计算机的单价为x元,B品牌计算机的单价为y元,则由题意可知:
    ,解得.
    答:A,B两种品牌计算机的单价分别为30元,32元.
    (2)由题意可知:,即.
    当时,;
    当时,,即.
    (3)当购买数量超过5个时,.
    ①当时,,解得,
    即当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;
    ②当时,,解得,
    即当购买数量为30个时,购买两种品牌的计算机花费相同;
    ③当时,,解得,
    即当购买数量超过30个时,购买B品牌的计算机更合算.
    25、(1)详见解析;(2)详见解析.
    【解析】
    (1)首先证明△AOD≌△BOC(SAS),利用全等三角形的性质得到BC=AD,再利用直角三角形斜边中线的性质即可得到OH=BC=AD,然后通过全等三角形对应角相等以及直角三角形两锐角互余证明OH⊥AD;
    (2)如图2中,延长OH到E,使得HE=OH,连接BE,通过证明△BEO≌△ODA,可得OH=OE=AD以及∠DAO+∠AOH=∠EOB+∠AOH=90°,问题得证;如图3中,延长OH到E,使得HE=OH,连接BE,延长EO交AD于G,同理可证OH=OE=AD,∠DAO+∠AOG=∠EOB+∠AOG=90°.
    【详解】
    (1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,
    ∴OC=OD,OA=OB,
    在△AOD与△BOC中,
    ∵OA=OB,∠AOD=∠BOC,OD=OC,
    ∴△AOD≌△BOC(SAS),
    ∴BC=AD
    ∵H是BC中点,
    ∴OH=BC=AD.
    ∵△AOD≌△BOC
    ∴∠ADO=∠BCO,∠OAD=∠OBC,
    ∵点H为线段BC的中点,
    ∴∠OBH=∠HOB=∠OAD,
    又∵∠OAD+∠ADO=90°,
    ∴∠ADO+∠BOH=90°,
    ∴OH⊥AD;
    (2)解:结论:OH⊥AD,OH=AD
    证明:如图2中,延长OH到E,使得HE=OH,连接BE,
    易证△BEO≌△ODA,
    ∴OE=AD,∴OH=OE=AD.
    由△BEO≌△ODA,知∠EOB=∠DAO,
    ∴∠DAO+∠AOH=∠EOB+∠AOH=90°,
    ∴OH⊥AD.
    如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.
    易证△BEO≌△ODA,
    ∴OE=AD,∴OH=OE=AD.
    由△BEO≌△ODA,知∠EOB=∠DAO,
    ∴∠DAO+∠AOG=∠EOB+∠AOG=90°,
    ∴∠AGO=90°,
    ∴OH⊥AD.
    本题考查了旋转变换,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    26、 (1);(2)m
    【解析】
    (1)先对原式提取公因式x,再用完全平方差公式分解即可得到答案;
    (2)先对括号的式子进行通分,再把括号外的式子的分母用平方差公式分解,再进行约分化简即可得到答案.
    【详解】
    解:(1) ==.
    (2)原式=
    =
    =
    =.
    本题主要考查了因式分解和分式的混合运算.掌握用公式法分解因式以及提取公因式法分解因式是解题的关键.
    题号





    总分
    得分
    批阅人
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    A树树叶的长宽比
    4.0
    4.9
    5.2
    4.1
    5.7
    8.5
    7.9
    6.3
    7.7
    7.9
    B树树叶的长宽比
    2.5
    2.4
    2.2
    2.3
    2.0
    1.9
    2.3
    2.0
    1.9
    2.0
    C树树叶的长宽比
    1.1
    1.2
    1.2
    0.9
    1.0
    1.0
    1.1
    0.9
    1.0
    1.3
    平均数
    中位数
    众数
    方差
    A树树叶的长宽比
    6.2
    6.0
    7.9
    2.5
    B树树叶的长宽比
    2.2
    0.38
    C树树叶的长宽比
    1.1
    1.1
    1.0
    0.02
    平均数(分)
    中位数(分)
    众数(分)
    一班
    a
    b
    85
    二班
    84
    75
    c
    平均数
    中位数
    众数
    方差
    A树树叶的长宽比
    B树树叶的长宽比
    2.1
    2.0
    C树树叶的长宽比
    相关试卷

    2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省南京市鼓楼区金陵汇文学校九年级数学第一学期开学监测模拟试题【含答案】: 这是一份2024-2025学年江苏省南京市鼓楼区金陵汇文学校九年级数学第一学期开学监测模拟试题【含答案】,共20页。试卷主要包含了选择题,四象限,则的值是,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省南京市第一中学数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年江苏省南京市第一中学数学九年级第一学期开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map