2024-2025学年江苏省苏州市姑苏区数学九上开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若点 P(m,n)与点 Q(-2,3)关于 y 轴对称,则 m、n 的值为( )
A.m=2,n=3B.m=-2,n=3C.m=2,n=-3D.m=-2,n=-3
2、(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=50°,则∠OAB的度数为( )
A.40°B.50°C.60°D.70°
3、(4分)小红随机写了一串数“”,数字“”出现的频数是( )
A.4B.5C.6D.7
4、(4分)如图,在平面直角坐标系中,点A1,A2,A3在直线y=x+b上,点B1,B2,B3在x轴上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形,若已知点A1(1,1),则点A3的纵坐标是( )
A.B.C.D.
5、(4分)已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是( )
A.B.C.D.
6、(4分)已知直角三角形的两条直角边长分别为1和4,则斜边长为( )
A.3B.C.D.5
7、(4分)下面关于平行四边形的说法中错误的是( )
A.平行四边形的两条对角线相等
B.平行四边形的两条对角线互相平分
C.平行四边形的对角相等
D.平行四边形的对边相等
8、(4分)将一次函数y=﹣3x﹣2的图象向上平移4个单位长度后,图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)王玲和李凯进行投球比赛,每人连投12次,投中一次记2分,投空一次记1分,王玲先投,投得16分,李凯要想超过王玲,应至少投中________次.
10、(4分)若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=_______.
11、(4分)如图,在平行四边形中,,,,则______.
12、(4分)已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.
13、(4分)将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为 .
三、解答题(本大题共5个小题,共48分)
14、(12分)解下列方程:
(1)x2﹣3x=1.
(2)(x﹣3)(x﹣1)=2.
15、(8分)已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0
(1)求证:无论k取何值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.
16、(8分)如图,在正方形内任取一点 ,连接,在⊿外分别以为边作正方形和.
⑴.按题意,在图中补全符合条件的图形;
⑵.连接,求证:⊿≌⊿;
⑶.在补全的图形中,求证:∥.
17、(10分)阅读下列材料:已知实数m,n满足(2m2+n2+1)(2m2+n2﹣1)=80,试求2m2+n2的值
解:设2m2+n2=t,则原方程变为(t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±1因为2m2+n2≥0,所以2m2+n2=1.
上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.
根据以上阅读材料内容,解决下列问题,并写出解答过程.
已知实数x,y满足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.
18、(10分)反比例函数的图象如图所示,,是该图象上的两点,
(1)求的取值范围;(2)比较与的大小.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.当轿车到达乙地后,马上沿原路以CD段速度返回,则货车从甲地出发_______小时后与轿车相遇(结果精确到0.01)
20、(4分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们次还原魔方所用时间的平均值与方差:
要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择________同学.
21、(4分)如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.
22、(4分)某商场为了统计某品牌运动鞋哪个号码卖得最好,则应关注该品牌运动鞋各号码销售数据的平均数、众数、中位数这三个数据中的_____________.
23、(4分)若分式的值为,则的值为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了解某校八年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成两个不完整的统计图,请结合图中信息回答下列问题:
(1)本次抽测的男生有 人,请将条形图补充完成,本次抽测成绩的中位数是 次;
(2)若规定引体向上6次及其以上为体能达标,则该校500名八年级男生中估计有多少人体能达标?
25、(10分)如图,在中,,平分,垂直平分于点,若,求的长.
26、(12分) (1)因式分解:; (2)计算:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y),进而得出答案.
【详解】
解:∵点P(m,n)与点Q(-2,3)关于y轴对称,
∴m=2,n=3,
故选:A.
此题主要考查了关于y轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键.
2、A
【解析】
首先根据题意得出平行四边形ABCD是矩形,进而求出∠OAB的度数.
【详解】
∵平行四边形ABCD的对角线AC,BD相交于点O,OA=OD,
∴四边形ABCD是矩形,
∵∠OAD=50°,
∴∠OAB=40°.
故选:A.
本题主要考查了平行四边形的性质,矩形的判定与性质,解题的关键是判断出四边形ABCD是矩形,此题难度不大.
3、D
【解析】
根据频数的概念:频数是表示一组数据中符合条件的对象出现的次数.
【详解】
∵一串数“”中,数字“3”出现了1次,
∴数字“3”出现的频数为1.
故选D.
此题考查频数与频率,解题关键在于掌握其概念
4、D
【解析】
设点A2,A3,A4坐标,根据等腰直角三角形的性质、结合函数解析式,即可求解.
【详解】
解:∵A1(1,1)在直线y=x+b上,
∴b=,
∴y=x+.
设A2(x2,y2),A3(x3,y3),
则有 y2=x2+,y3=x3+.
又∵△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.
∴x2=2y1+y2,
x3=2y1+2y2+y3,
将点坐标依次代入直线解析式得到:
y2=y1+1
y3=y1+y2+1= y2
又∵y1=1
∴y2=,
y3=()2=,
∴点A3的纵坐标是,
故选:D.
此题主要考查了一次函数点坐标特点,以及等腰直角三角形斜边上高等于斜边长一半.解题的关键是找出点与直线之间的关系,进而求出点的坐标.
5、D
【解析】
∵正比例函数且随的增大而减少,
在直线中,
∴函数图象经过一、三、四象限.
故选D.
6、C
【解析】
根据勾股定理计算即可.
【详解】
解:由勾股定理得,斜边长=,
故选:C.
本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
7、A
【解析】
∵平行四边形的对边相等、对角相等、对角线互相平分,
∴B、C、D说法正确;
只有矩形的对角线才相等,故A说法错误,
故选A.
8、C
【解析】
画出平移前后的函数图像,即可直观的确定答案.
【详解】
解:如图:平移后函数图像不经过第三象限,即答案为C.
本题考查了函数图像的平移,作图法是一种比较好的解题方法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据题意,可以列出相应的不等式,本题得以解决,注意问题中是李凯超过王玲.
【详解】
解:设李凯投中x个球,总分大于16分,则
2x+(12-x)×1>16,
解得,x>4,
∴李凯要想超过王玲,应至少投中1次,
故答案为:1.
本题考查一元一次不等式的应用,解答本题的关键是明确题意,列出相应的不等式,利用不等式的性质解答.
10、1.
【解析】
试题分析:关于y轴对称的两点横坐标互为相反数,纵坐标相等,则m+2=4,n+5=3,解得:m=2,n=-2,则m+n=2+(-2)=1.
考点:关于y轴对称
11、
【解析】
根据平行四边形的性质可得AB=10,BC=AD=6,由BC⊥AC,根据勾股定理求得AC的长,即可求得OA长,再由勾股定理求得OB的长,即可求得BD的长.
【详解】
∵四边形ABCD是平行四边形,
∴BC=AD=6,OB=OD,OA=OC,
∵AC⊥BC,
∴AC==8,
∴OC=4,
∴OB==2,
∴BD=2OB=4
故答案为:4.
本题考查了平行四边形的性质以及勾股定理,熟练运用平行四边形的性质及勾股定理是解决本题的关键.
12、
【解析】
分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.
详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,
∵菱形的对角线互相垂直平分,
根据勾股定理可得菱形的边长=cm.
故答案为.
点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.
13、
【解析】
因为阴影部分的面积=S正方形BCQW﹣S梯形VBCF,根据已知求得梯形的面积即不难求得阴影部分的面积了.
解:∵VB∥ED,三个正方形的边长分别为2、3、5,
∴VB:DE=AB:AD,即VB:5=2:(2+3+5)=1:5,
∴VB=1,
∵CF∥ED,
∴CF:DE=AC:AD,即CF:5=5:10
∴CF=2.5,
∵S梯形VBFC=(BV+CF)•BC=,
∴阴影部分的面积=S正方形BCQW﹣S梯形VBCF=.
故答案为.
三、解答题(本大题共5个小题,共48分)
14、(1)x1=1,x2=3;(2)x1=5,x2=﹣1
【解析】
(1)提取公因式,用分解因式法解方程,分别令每个因式等于1,求出两根即可;
(2)左边用多项式乘以多项式的运算法则展开,移项,使右边等于零,合并同类项,整理成一元二次方程的标准形式,再用分解因式法解方程即可.
【详解】
(1)解:x2﹣3x=1,
x(x﹣3)=1,
x=1,x﹣3=1,
x1=1,x2=3
(2)解:(x﹣3)(x﹣1)=2,
整理得:x2﹣4x﹣5=1,
(x﹣5)(x+1)=1,
x﹣5=1,x+1=1,
x1=5,x2=﹣1
本题考查利用因式分解解一元二次方程,解题关键在于掌握因式分解.
15、(1)证明见解析;(2)2.
【解析】
试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;
(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.
试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,
∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,
而(2k﹣3)2≥0,
∴△≥0,
所以无论k取任何实数,方程总有两个实数根;
(2)解:x2﹣(2k+1)x+4k﹣2=0,
整理得(x﹣2)[x﹣(2k﹣1)]=0,
∴x1=2,x2=2k﹣1,
当a=4为等腰△ABC的底边,则有b=c,
因为b、c恰是这个方程的两根,则2=2k﹣1,
解得k=,则三角形的三边长分别为:2,2,4,
∵2+2=4,这不满足三角形三边的关系,舍去;
当a=4为等腰△ABC的腰,
因为b、c恰是这个方程的两根,所以只能2k﹣1=4,
则三角形三边长分别为:2,4,4,
此时三角形的周长为2+4+4=2.
所以△ABC的周长为2.
16、(1)补全图形见解析;(2)证明见解析;(3)证明见解析.
【解析】
分析:⑴问要注意“在⊿外”作正方形;
本题的⑵问根据正方形的性质得出的结论为三角形全等提供条件,比较简单;
本题额⑶问可以连接正方形的对角线后,然后利用“内错角相等,两直线平行.”来证明.
详解:⑴.如图1,在⊿外分别以为边作正方形和.(要注意是在“⊿外”作正方形,见图1)
⑵.在图1的基础上连接.
∵四边形 、和都是正方形
∴
∴
∴
∴⊿≌⊿( )
⑶. 继续在图1的基础上连接.(见图2)
∵四边形是正方形,且已证
∴
∴
∵⊿≌⊿
∴
∴
∴ 即
∴∥.
点睛:本题的⑴问要注意的是在“在⊿外”作正方形,所以不要作在三角形内部;本题的⑵问主要是利用正方形提供的条件来证明两个三角形全等,比较简单,常规证法;本题的⑶问巧妙利用与正方形的对角线构成的内错角来提供平行的条件,需正方形和全等三角形来综合提供.
17、
【解析】
设t=x2+y2(t≥0),将原方程转化为(4t+3)(4t﹣3)=27,求出t的值,即可解答.
【详解】
解:设t=x2+y2(t≥0),则原方程转化为(4t+3)(4t﹣3)=27,
整理,得
16t2﹣1=27,
所以t2= .
∵t≥0,
∴t= .
∴x2+y2的值是.
此题考查换元法解一元二次方程,解题关键在于利用换元法解题.
18、(1);(2).
【解析】
(1)根据反比例函数的图象和性质可知2m-1>0,从而可以解答本题;
(2)根据反比例函数的性质可以判断b1与b2的大小.
【详解】
解:(1)由,得.
(2)由图知,随增大而减小.
又∵,
.
本题考查反比例函数图象上点的坐标特征、反比例函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4.68.
【解析】
观察图象可求得货车的速度为60千米/时,轿车在CD段的速度为110千米/时,轿车到达乙地时与货车相距30千米,设货车从甲地出发后x小时后再与轿车相遇,根据题意可得方程110(x-4.5)+60(x-4.5)=30,解方程即可求得x的值,由此即可解答.
【详解】
观察图象可得,
货车的速度为300÷5=60(千米/时),
轿车在CD段的速度为(300-80)÷(4.5-2.5)=110(千米/时),
轿车到达乙地时与货车相距300-60×4.5=30(千米),
设货车从甲地出发后x小时后再与轿车相遇,
110(x-4.5)+60(x-4.5)=30,
解得x=,
∴货车从甲地出发后4.68小时后再与轿车相遇.
故答案为4.68.
本题考查了一次函数的应用,根据图象获取信息是解决问题的关键.
20、丁
【解析】
据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:因为乙和丁的方差最小,但丁平均数最小,
所以丁还原魔方用时少又发挥稳定.
故应该选择丁同学.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
21、1.
【解析】
依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.
【详解】
解:由折叠可得,EF=AE,BF=AB.
∵△FDE的周长为8,△FCB的周长为22,
∴DF+AD=8,FC+CB+AB=22,
∴平行四边形ABCD的周长=8+22=30,
∴AB+BC=BF+BC=15,
又∵△FCB的周长=FC+CB+BF=22,
∴CF=22-15=1,
故答案为:1.
本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
22、众数
【解析】
根据题意可得:商场应该关注鞋的型号的销售量,特别是销售量最大的鞋型号即众数.
【详解】
某商场应该关注的各种鞋型号的销售量,特别是销售量最大的鞋型号,由于众数是数据中出现次数最多的数,故最应该关注的是众数.
故答案为:众数.
本题考查了统计的有关知识,主要包括平均数、中位数、众数和极差.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
23、
【解析】
分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
由题意可得3-2x=1,
解得x=,
又∵2+3x≠1,
解得x=.
此题考查分式的值为零的条件,解题关键在于掌握运算法则
二、解答题(本大题共3个小题,共30分)
24、(1)本次抽测的男生有25人,抽测成绩的中位数是6次;(2)达标人数为360人.
【解析】
(1)根据题意和统计图中的数据可以求得本次抽测的男生人数和成绩为6次的人数,进而求得本次抽测成绩的中位数;
(2)求出达标率,然后可以估计该校500名八年级男生中有多少人体能达标.
【详解】
解:(1)由题意可得,
本次抽测的男生有:7÷28%=25(人),
抽测成绩为6次的有:25×32%=8(人),
补充完整的条形统计图如图所示,
则本次抽测成绩的中位数是:6次,
故答案为:25,6;
(2)由题意得,达标率为:,
估计该校500名八年级男生中达标人数为:(人).
本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,找出所求问题需要的条件,利用统计的知识解答.
25、的长为.
【解析】
根据角平分线的性质可得DE=CE,根据垂直平分线可得AE=BE,进而得到,设,则,根据直角三角形30°角所对直角边为斜边的一半得到关于x的方程,然后求解方程即可.
【详解】
解:设,则,
平分,,,
,
又垂直平分,
,
,
在中,,
,
,即,
解得.
即的长为.
本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.
26、 (1);(2)m
【解析】
(1)先对原式提取公因式x,再用完全平方差公式分解即可得到答案;
(2)先对括号的式子进行通分,再把括号外的式子的分母用平方差公式分解,再进行约分化简即可得到答案.
【详解】
解:(1) ==.
(2)原式=
=
=
=.
本题主要考查了因式分解和分式的混合运算.掌握用公式法分解因式以及提取公因式法分解因式是解题的关键.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
(秒)
2024-2025学年江苏省无锡市长泾片数学九上开学联考模拟试题【含答案】: 这是一份2024-2025学年江苏省无锡市长泾片数学九上开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州市青云中学九上数学开学达标测试试题【含答案】: 这是一份2024-2025学年江苏省苏州市青云中学九上数学开学达标测试试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州市园区第十中学数学九上开学复习检测模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州市园区第十中学数学九上开学复习检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。