2024-2025学年江苏省苏州吴江市青云中学九年级数学第一学期开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),则“兵”位于点( )
A.(﹣1,1)B.(﹣4,1)C.(﹣2,﹣1)D.(1,﹣2)
2、(4分)的算术平方根是( )
A.B.C.D.
3、(4分)已知一元二次方程x2-2x-1=0的两根分别为x1,x2,则的值为( )
A.2B.-1
C.-D.-2
4、(4分)已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为( )
A.7B.8C.6或8D.7或8
5、(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是( )
A.12B.24C.40D.48
6、(4分)以下四个命题正确的是
A.平行四边形的四条边相等
B.矩形的对角线相等且互相垂直平分
C.菱形的对角线相等
D.一组对边平行且相等的四边形是平行四边形
7、(4分)下列交通标志是轴对称图形的是( )
A.B.C.D.
8、(4分)年一季度,华为某销公营收入比年同期增长,年第一季度营收入比年同期增长,年和年第一季度营收入的平均增长率为,则可列方程( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)①_________;②_________;③_________.
10、(4分)一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______
11、(4分)如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.
12、(4分)若关于x的一元一次不等式组的的解集为,则a的取值范围是___________.
13、(4分)在Rt△ABC中,∠C=90°,△ABC的周长为,其中斜边的长为2,则这个三角形的面积为_____________。
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.
(1)求证:矩形DEFG是正方形;
(2)求AG+AE的值;
(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.
15、(8分)先化简,再求值:,其中- 1.
16、(8分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.
17、(10分)如图,在中,AD是高,E、F分别是AB、AC的中点.
(1)求证:EF垂直平分AD;
(2)若四边形AEDF的周长为24,,求AB的长.
18、(10分)在▱ABCD中,对角线AC、BD相交于O,EF过点O,连接AF、CE.
(1)求证:△BFO≌△DEO;
(2)若AF⊥BC,试判断四边形AFCE的形状,并加以证明;
(3)若在(2)的条件下再添加EF平分∠AEC,试判断四边形AFCE的形状,无需说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据:2,﹣1,0,x,1的平均数是0,则x=_____.
20、(4分)如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为 .
21、(4分)有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使关于的不等式组有解的概率为____________;
22、(4分)如图,AB∥CD,E、F分别是AC、BD的中点,若AB=5,CD=3,则EF的长为______________.
23、(4分)直线沿轴平移3个单位,则平移后直线与轴的交点坐标为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:在平面直角坐标系中有两条直线y=﹣1x+3和y=3x﹣1.
(1)确定这两条直线交点所在的象限,并说明理由;
(1)求两直线与坐标轴正半轴围成的四边形的面积.
25、(10分)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.
26、(12分)一辆汽车和一辆摩托车分别从,两地去同一城市,它们离地的路程随时间变化的图象如图所示,根据图象中的信息解答以下问题:
(1),两地相距______;
(2)分别求出摩托车和汽车的行驶速度;
(3)若两图象的交点为,求点的坐标,并指出点的实际意义.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据“帅”位于点(-2,-2),“马”位于点(1,-2),可知原点位置,然后可得“兵”的坐标.
【详解】
解:如图
∵“帅”位于点(﹣2,﹣2),“马”位于点(1,﹣2),
∴原点在这两个棋子的上方两个单位长度的直线上且在马的左边,距离马的距离为1个单位的直线上,两者的交点就是原点O,
∴“兵”位于点(﹣4,1).
故选:B.
本题考查了直角坐标系、点的坐标,解题的关键是确定坐标系的原点的位置.
2、B
【解析】
根据算术平方根的概念求解即可.
【详解】
解:4的算术平方根是2,故选B.
本题考查了算术平方根的概念,属于基础题型,熟练掌握算术平方根的定义是解题的关键.
3、D
【解析】
由题意得,
,,
∴=.
故选D.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .
4、D
【解析】
因为等腰三角形的两边分别为2和3,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.
【详解】
当2为底时,三角形的三边为3,2、3可以构成三角形,周长为8;
当3为底时,三角形的三边为3,2、2可以构成三角形,周长为1.
故选D.
本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
5、B
【解析】
解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OA=AC=4,∴OB= =3,∴BD=2OB=6,∴菱形ABCD的面积是: AC•BD=×8×6=1.故选B.
点睛:此题考查了菱形的性质以及勾股定理.解题的关键是熟练运用勾股定理以及菱形的各种性质.
6、D
【解析】
根据平行四边形的性质与判定、矩形的性质和菱形的性质判断即可.
【详解】
解:A、菱形的四条边相等,错误;
B、矩形的对角线相等且平分,错误;
C、菱形的对角线垂直,错误;
D、一组对边平行且相等的四边形是平行四边形,正确.
故选D.
本题考查了命题与定理的知识,解题的关键是了解平行四边形的性质、矩形的性质和菱形的性质,难度一般.
7、C
【解析】
试题分析:A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项正确;
D、不是轴对称图形,故此选项错误.
故选C.
点睛:此题主要考查了轴对称图形的概念.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.
8、D
【解析】
利用两种方法算出2019年第一季度的收入,因所得结果是一致的,进而得出等式即可.
【详解】
解:如果2017年第一季度收入为a,则根据题意2019年第一季度的收入为:a(1+22%)(1+30%),设2018年和2019年第一季度营收入的平均增长率为x,根据题意又可得2019年第一季度收入为:,此2种方式结果一样,可得:
a(1+22%)(1+30%)=,即,
故选择:D.
此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①, ②, ③.
【解析】
①根据二次根式的性质化简即可解答
②根据立方根的性质计算即可解答
③根据积的乘方,同底数幂的除法,进行计算即可解答
【详解】
①=
②=-3
③=4x =4x
此题考查二次根式的性质,同底数幂的除法,解题关键在于掌握运算法则
10、k<0
【解析】
根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.
【详解】
解:∵一次函数y=kx+3的图象不经过第三象限,
∴经过第一、二、四象限,
∴k<0.
故答案为:k<0.
本题考查了一次函数图象与系数的关系.
11、
【解析】
根据对折之后对应边长度相同,联立直角三角形中勾股定理即可求解.
【详解】
设
∵矩形纸片中,,
现将其沿对折,使得点C与点A重合,点D落在处,
∴ ,
在中,,
即 解得 ,
故答案为:.
本题考查了矩形的性质和勾股定理的应用,解题的关键在于找到对折之后对应边相等关系和勾股定理中的等量关系.
12、.
【解析】
不等式待定系数的取值范围就是已知不等式或不等式组的解集或特殊解,确定不等式中未知数的系数的取值范围.
【详解】
由得
因为解集为
所以
故答案为:
考核知识点:不等式组解集.会解不等式组是关键.
13、0.5
【解析】
首先根据三角形周长及斜边长度求得两直角边的和,再根据勾股定理得出两直角边各自平方数的和的值,再利用完全平方公式得出两直角边的乘积的2倍的值即可求出三角形面积.
【详解】
解:由题意可得AC+BC+AB=,
∵∠C=90°,则AB为斜边等于2,
∴AC+BC=,
再根据勾股定理得出,
根据完全平方公式,
将AC+BC=和代入公式得:,
即=1,
∴Rt△ABC面积=0.5=0.5.
本题考查了勾股定理,解题的关键是利用完全平方公式求得两直角边的乘积的2倍的值.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)AE+AG==4;(3)EM=.
【解析】
(1)如图,作EM⊥AD于M,EN⊥AB于N.只要证明△EMD≌△ENF即可解决问题;
(2)只要证明△ADG≌△CDE,可得AG=EC即可解决问题;
(3)如图,作EH⊥DF于H.想办法求出EH,HM即可解决问题;
【详解】
(1)如图,作EM⊥AD于M,EN⊥AB于N.
∵四边形ABCD是正方形,
∴∠EAD=∠EAB,
∵EM⊥AD于M,EN⊥AB于N,
∴EM=EN,
∵∠EMA=∠ENA=∠DAB=90°,
∴四边形ANEM是矩形,
∴∠MEN=∠DEF=90°,
∴∠DEM=∠FEN,
∵∠EMD=∠ENF=90°,
∴△EMD≌△ENF,
∴ED=EF,
∵四边形DEFG是矩形,
∴四边形DEFG是正方形.
(2)∵四边形DEFG是正方形,四边形ABCD是正方形,
∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,
∴∠ADG=∠CDE,
∴△ADG≌△CDE,
∴AG=CE,
∴AE+AG=AE+EC=AC=AD=4.
(3)如图,作EH⊥DF于H.
∵四边形ABCD是正方形,
∴AB=AD=4,AB∥CD,
∵F是AB中点,
∴AF=FB
∴DF=,
∵△DEF是等腰直角三角形,EH⊥AD,
∴DH=HF,
∴EH=DF=,
∵AF∥CD,
∴AF:CD=FM:MD=1:2,
∴FM=,
∴HM=HF﹣FM=,
在Rt△EHM中,EM=.
本题考查正方形的性质、全等三角形的判定和性质、矩形的性质和判定、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
15、
【解析】
试题分析:先根据分式混合运算的法则把原式进行化简,然后代入计算即可.
试题解析:解:原式==
当x=时,原式==.
16、,.
【解析】
先对进行化简,再选择-1,0,1代入计算即可.
【详解】
原式
因为且
所以当时,原式
当时,原式
考查了整式的化简求值,解题关键是熟记分式的运算法则.
17、(1)证明过程见解析;(2)AB的长为15.
【解析】
(1)根据线段两端点距离相等的点在线段的垂直平分线即可证明该结论;
(2)根据,可得AF+DF=AC,DE+AE=AB,即可得出答案.
【详解】
(1)证明:∵△ADB和△ADC是直角三角形
且E、F分别是AB、AC的中点
∴,
∴E在线段AD的垂直平分线上,F在线段AD的垂直平分线上
∴EF垂直平分AD
(2)∵,
∴AF+DF=AC,DE+AE=AB
又∵四边形AEDF的周长为24,
∴AB=24-9=15
故AB的长为15.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及到线段两端点距离相等的点在线段的垂直平分线的性质,熟记性质是解决本题的关键.
18、(1)详见解析;
(2)四边形AFCE是矩形,证明见解析;
(3)四边形AFCE是正方形.
【解析】
(1)由平行四边形的性质得出OB=OD,OA=OC,AD∥BC,得出∠OBF=∠ODE,由ASA证明△BFO≌△DEO即可;
(2)由全等三角形的性质得出BF=DE,证出四边形AFCE是平行四边形,再证出∠AFC=90°,即可得出四边形AFCE是矩形.
(3)由EF平分∠AEC知∠AEF=∠CEF,再由AD∥BC知∠AEF=∠CFE,从而得∠CEF=∠CFE,继而知CE=CF,据此可得答案.
【详解】
解:(1)∵四边形ABCD是平行四边形,
∴OB=OD,AD∥BC,AD=BC,
∴∠OBF=∠ODE,
在△BFO和△DEO中,
∵ ,
∴△BFO≌△DEO(ASA);
(2)四边形AFCE是矩形;理由如下:
∵△BFO≌△DEO,
∴BF=DE,
∴CF=AE,
∵AD∥BC,
∴四边形AFCE是平行四边形;
又∵AF⊥BC,
∴∠AFC=90°,
∴四边形AFCE是矩形;
(3)∵EF平分∠AEC,
∴∠AEF=∠CEF,
∵AD∥BC,
∴∠AEF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
∴四边形AFCE是正方形.
本题考查了四边形的综合问题,主要考查平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-2
【解析】
根据平均数的公式可得关于x的方程,解方程即可得.
【详解】
由题意得
,
解得:x=-2,
故答案为:-2.
本题考查了平均数,熟练掌握平均数的计算公式是解题的关键.
20、2.5
【解析】
试题分析:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,
∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,
在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF,设EF=MF=x,
∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,
∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2, 即22+(4﹣x)2=x2,
解得:x=, ∴FM=.
考点:1.旋转的性质;2.全等三角形的判定与性质;3.正方形的性质.
21、
【解析】
首先确定不等式的解,然后根据有确定a的取值范围,再利用概率公式求解即可.
解:解关于x不等式得,
∵关于x不等式有实数解,
∴
解得a<1.
∴使关于x不等式有实数解的概率为.
故答案为
“点睛”本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,期中事件A出现m种结果,那么事件A的概率P(A)=.
22、1
【解析】
分析:连接DE并延长交AB于H,证明△DCE≌△HAE,根据全等三角形的性质可得DE=HE,DC=AH,则EF是△DHB的中位线,再根据中位线的性质可得答案.
详解:连接DE并延长交AB于H.∵CD∥AB, ∴∠C=∠A, ∵E是AC中点,
∴DE=EH, 在△DCE和△HAE中,∠C=∠A,CE=AE,∠CED=∠AEH,
∴△DCE≌△HAE(ASA), ∴DE=HE,DC=AH, ∵F是BD中点,
∴EF是△DHB的中位线, ∴EF=BH, ∴BH=AB-AH=AB-DC=2, ∴EF=1.
点睛:此题主要考查了全等三角形的判定与性质,以及三角形中位线性质,关键是正确画出辅助线,证明△DCE≌△HAE.
23、(0,2)或(0,)
【解析】
试题分析:∵直线沿轴平移3个单位,包括向上和向下,
∵平移后的解析式为或.
∵与轴的交点坐标为(0,2);与轴的交点坐标为(0,).
二、解答题(本大题共3个小题,共30分)
24、 (1)两直线交点坐标为(1,1),在第一象限;(1).
【解析】
(1)联立两直线解析式成方程组,解方程组即可求出交点坐标,进而即可得出交点所在的象限;
(1)令直线y=﹣1x+3与x、y轴分别交于点A、B,直线y=3x﹣1与x、y轴分别交于点C、D,两直线交点为E,由直线AB、CD的解析式即可求出点A、B、C的坐标,利用分割图形求面积法结合三角形的面积公式即可求出两直线与坐标轴正半轴围成的四边形的面积.
【详解】
(1)联立两直线解析式得:,
解得:,
∴两直线交点坐标为(1,1),在第一象限.
(1)令直线y=﹣1x+3与x、y轴分别交于点A、B,直线y=3x﹣1与x、y轴分别交于点C、D,两直线交点为E,如图所示.
令y=﹣1x+3中x=0,则y=3,
∴B(0,3);
令y=﹣1x+3中y=0,则x=,
∴A(,0).
令y=3x﹣1中y=0,则x=,
∴C(,0).
∵E(1,1),
∴S四边形OCEB=S△AOB﹣S△ACE=OA•OB﹣AC•yE=××3﹣×(﹣)×1=.
此题考查两条直线相交或平行问题,联立直线解析式成方程组求出交点
25、证明见详解.
【解析】
通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形.
【详解】
证明:∵BE⊥AD,CF⊥AD,
∴∠AEB=∠DFC=90°,
∵AB∥CD,
∴∠A=∠D,
在△AEB与△DFC中,
∴△AEB≌△DFC(ASA),
∴BE=CF.
∵BE⊥AD,CF⊥AD,
∴BE∥CF.
∴四边形BECF是平行四边形.
本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.
26、(1)20;(2),; (3)即,的实际意义为出发1小时后汽车和摩托车在距离地的地点相遇.(或距离地).
【解析】
(1)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地相距20km;
(2)根据图象可知,摩托车4小时行驶160千米,汽车3小时行驶180千米,利用速度=路程÷时间即可分别求出摩托车和汽车的行驶速度;
(3)分别求出摩托车和汽车离A地的路程y(km)随时间x(h)变化的函数解析式,再将它们联立组成方程组,解方程组得到点P的坐标,然后指出点P的实际意义.
【详解】
解:(1)由图象可知,A,B两地相距20km.
故填:20;
(2)根据图像汽车的速度为
摩托车的速度为
(3)设汽车行驶图像对应的一次函数的表达式为.根据题意,把已知的两点
坐标和代入,
解得,.
这个一次函数表达式为
同理解得摩托车对应的一次函数的表达式为
由题意解方程组
得,
即,的实际意义为出发1小时后汽车和摩托车在距离地的地点相遇.(或距离地)
本题考查了一次函数的应用,一次函数解析式的确定,路程、速度与时间关系的应用,坐标确定位置,两直线的交点坐标求法,以及函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.
题号
一
二
三
四
五
总分
得分
2024-2025学年江苏省苏州市园区第十中学数学九上开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州市园区第十中学数学九上开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州市青云中学九上数学开学达标测试试题【含答案】: 这是一份2024-2025学年江苏省苏州市青云中学九上数学开学达标测试试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省南京市宁海中学九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年江苏省南京市宁海中学九年级数学第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。