2024-2025学年江西省吉安市名校九上数学开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,如图,正方形的面积为25,菱形的面积为20,求阴影部分的面积()
A.11B.6.5C.7D.7.5
2、(4分)用配方法解下列方程,其中应在方程左右两边同时加上4的是( )
A.x2﹣2x=5B.x2+4x=5C.2x2﹣4x=5D.4x2+4x=5
3、(4分)下列事件中,属于必然事件的是()
A.经过路口,恰好遇到红灯;B.四个人分成三组,三组中有一组必有2人;
C.打开电视,正在播放动画片;D.抛一枚硬币,正面朝上;
4、(4分)如图,四边形ABCD是正方形,点E、F分别在AD、CD上,AF、BE相交于点G,且AF=BE,则下列结论不正确的是:( )
A.AF⊥BEB.BG=GFC.AE=DFD.∠EBC=∠AFD
5、(4分)为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是( )
A.B.
C.D.
6、(4分)一次函数不经过的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
7、(4分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则∠A=( )
A.15°B.30°C.45°D.60°
8、(4分)要使分式有意义,x应满足的条件是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若m2﹣n2=6,且m﹣n=2,则m+n=_________
10、(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是_____(填“甲”或“乙”).
11、(4分)化简﹣的结果是_____.
12、(4分)要使分式的值为0,则x的值为____________.
13、(4分)一个多边形的内角和与外角和的比是4:1,则它的边数是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)某校为了对甲、乙两个班的综合情况进行评估,从行规、学风、纪律三个项目亮分,得分情况如下表:
(1)若根据三项得分的平均数从高到低确定名次,那么两个班级的排名顺序怎样?
(2)若学校认为这三个项目的重要程度有所不同,而给予“行规”“学风”“纪律”三个项目在总分中所占的比例分别为20%、30%、50%,那么两个班级的排名顺序又怎样?
15、(8分)计算:( +)×
16、(8分)如图,是的中线,是线段上一点(不与点重合).交于点,,连接.
(1)如图1,当点与重合时,求证:四边形是平行四边形;
(2)如图2,当点不与重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长交于点,若,且,求的度数.
17、(10分)如图,矩形中,,将矩形绕点旋转得到矩形,使点的对应点落在上,交于点,在上取点,使.
(1)求证:;
(2)求的度数;
(3)若,求的长.
18、(10分)如图,在四边形中,,,,,,点从点出发,以每秒单位的速度向点运动,点从点同时出发,以每秒单位的速度向点运动,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为秒.
(1)当时,若以点,和点,,,中的两个点为顶点的四边形为平行四边形,且线段为平行四边形的一边,求的值.
(2)若以点,和点,,,中的两个点为顶点的四边形为菱形,且线段为菱形的一条对角线,请直接写出的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)点A(-1,y1),B(3,y2)是直线y=-4x+3图象上的两点,则y1______y2(填“>”或“<”).
20、(4分)直线与轴、轴的交点分别为、则这条直线的解析式为__________.
21、(4分)如图,在矩形中,的平分线交于点,连接,若,,则_____.
22、(4分)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.
23、(4分)某果农 2014 年的年收入为 5 万元,由于党的惠农政策的落实,2016 年年收入增加到 7.2万元,若平均每年的增长率是 x ,则 x =_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)函数 y=(m-2)x+m2-4 (m为常数).
(1)当m取何值时, y是x的正比例函数?
(2) 当m取何值时, y是x的一次函数?
25、(10分)如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.
(1)求直线AD及抛物线的解析式;
(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?
(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.
26、(12分)如图,在□ABCD中,点E、F分别在AD、BC边上,且AE=CF,求证:BE//FD.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.
【详解】
∵正方形ABCD的面积是25,
∴AB=BC=BP=PQ=QC=5,
又∵S菱形BPQC=PQ×EC=5×EC=20,
∴S菱形BPQC=BC•EC,
即20=5•EC,
∴EC=4
在Rt△QEC中,EQ==3;
∴PE=PQ-EQ=2,
∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.
故选A.
此题考查菱形的性质,正方形的性质,解题关键在于利用勾股定理进行计算.
2、B
【解析】
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
【详解】
A、因为本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;
B、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项正确;
C、将该方程的二次项系数化为x 2 -2x= ,所以本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;
D、将该方程的二次项系数化为x 2 +x= ,所以本方程的一次项系数是1,所以等式两边同时加上一次项系数一半的平方;故本选项错误;
故选B.
本题考查的知识点是配方法解一元二次方程,解题关键是注意选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
3、B
【解析】
分析:必然事件就是一定能发生的事件,根据定义即可作出判断.
详解:A、经过路口,恰好遇到红灯是随机事件,选项错误;
B、4个人分成三组,其中一组必有2人,是必然事件,选项正确;
C、打开电视,正在播放动画片是随机事件,选项错误;
D、抛一枚硬币,正面朝上是随机事件,选项错误.
故选B.
点睛:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4、B
【解析】
由四边形ABCD是正方形,可得AD=BA,∠D=∠BAE=90°,利用直角三角形全等的判定(HL)可得Rt△ABE≌Rt△DAF,可得出边角关系,对应选项逐一验证即可.
【详解】
∵四边形ABCD是正方形,
∴ AD=AB,∠D=∠BAE=90°,
又AF=BE,
∴Rt△ABE≌Rt△DAF(HL),
∴∠ABE=∠DAF,∠AEB=∠DFA,AE=DF,因此C选项正确,
又∵∠DAF+∠DFA =90°,
∴∠DAF+∠AEB=90°,
∴∠AGE=90°,即AF⊥BE,因此A选项正确,
∵∠EBC+∠ABE=90°,∠ABE+∠AEB=90°,∠AEB=∠AFD,
∴∠EBC=∠AFD,因此D选项正确,
∵BE=AF,若BG=GF,则AG=GE,可得,∠DAF=45°,则AF应该为正方形的对角线,从图形来看,AF不是对角线,所以与题目矛盾,所以B选项错误,
故选:B.
考查了正方形的性质,全等三角形的判定和性质,余角的定义,垂直的定义,熟记几何图形的概念,判定和性质定理是解题的关键,注意题目要求选不正确的.
5、C
【解析】
解:根据题意,当0≤x≤100时,y=0.6x,当x>100时,y=100×0.6+0.8(x﹣100)=60+0.8x﹣80=0.8x﹣20,所以,y与x的函数关系为,纵观各选项,只有C选项图形符合.故选C.
点睛:本题考查了分段函数以及函数图象,根据题意求出各用电量段内的函数解析式是解题的关键.
6、A
【解析】
由于k=-1<0,b=-1,由此可以确定函数的图象经过的象限.
【详解】
∵y=-x-1,
∴k=-1<0,b=-1<0,
∴它的图象经过的象限是第二、三、四象限,不经过第一象限.
故选A.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
7、B
【解析】
逆用直角三角形的性质:30度角所对的直角边等于斜边的一半,即可得出答案.
【详解】
在Rt△ABC中,
∵∠C=90°,AB=2BC,
∴∠A=30°.
故选B.
本题考查了直角三角形的性质.熟练应用直角三角形的性质:30度角所对的直角边等于斜边的一半是解题的关键.
8、D
【解析】
直接利用分式有意义的条件,即分母不等于0,进而得出答案.
【详解】
解:要使分式有意义,x应满足的条件是:x-1≠0,
解得:x≠1.
故选:D.
本题考查分式有意义的条件,正确把握分式有意义的条件是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
利用平方差公式得到(m+n)(m-n)=6,然后把m-n=2代入计算即可.
【详解】
∵,
∴m+n=3.
10、乙
【解析】
根据方差的定义,方差越小数据越稳定,即可得出答案.
【详解】
解:∵甲、乙的平均成绩都是9环,方差分别是S甲2=0.8,S乙2=0.35,
∴S甲2>S乙2,
∴成绩比较稳定的是乙;
故答案为:乙.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
11、﹣
【解析】
原式通分并利用同分母分式的减法法则计算即可得到结果
【详解】
原式=
=
=
故答案为:
此题考查分式的加减法,掌握运算法则是解题关键
12、-2.
【解析】
分式的值为零的条件是分子等于0且分母不等于0,
【详解】
因为分式的值为0,
所以x+2=0且x-1≠0,
则x=-2,
故答案为-2.
13、1.
【解析】
多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【详解】
解:根据题意,得
(n﹣2)•180=4360,
解得:n=1.
则此多边形的边数是1.
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、(1)根据三项得分的平均数从高到低确定名次,乙班第一,甲班第二.(2)两个班级的排名顺序发生变化,甲班第一,乙班第二.
【解析】
(1)根据算术平均数的计算方法计算甲、乙班的平均数,通过比较得出得出结论,
(2)利用加权平均数的计算方法分别计算甲、乙班的总评成绩,比较做出判断即可.
【详解】
(1)甲班算术平均数:(83+88+90)÷3=87,乙班的算术平均数:(93+86+85)÷3=88,因此第一名是乙班,第二名是甲班,
答:根据三项得分的平均数从高到低确定名次,乙班第一,甲班第二.
(2)甲班的总评成绩:83×20%+88×30%+90×50%=88,乙班的总评成绩:93×20%=86×30%+85×50%=86.9
∵88>86.9
∴甲班高于乙班,
答:两个班级的排名顺序发生变化,甲班第一,乙班第二.
考查算术平均数、加权平均数的意义及计算方法,解题的关键是掌握算术平均数、加权平均数的计算.
15、6+2.
【解析】
先化简二次根式,再利用乘法分配律计算可得.
【详解】
原式=(2+2)×
=6+2.
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.
16、(1)见解析;(2)成立,见解析;(3).
【解析】
(1)先判断出∠ECD=∠ADB,进而判断出△ABD≌△EDC,即可得出结论;
(2)先判断出四边形DMGE是平行四边形,借助(1)的结论即可得出结论;
(3)先判断出MI∥BH,MI=BH,进而利用直角三角形的性质即可得出结论.
【详解】
解:(1)∵,
∴,
∵,
∴,
∵是的中线,且与重合,
∴,
∴,
∴,
∵,
∴四边形是平行四边形;
(2)结论成立,理由如下:如图2,过点作交于,
∵,
∴四边形是平行四边形,
∴,且,
由(1)知,,,
∴,,
∴四边形是平行四边形;
(3)如图3取线段的中点,连接,
∵,
∴是的中位线,
∴,,
∵,且,
∴,,
∴.
此题是四边形综合题,主要考查了三角形的中线,中位线的性质和判定,平行四边形的平行和性质,直角三角形的性质,正确作出辅助线是解绑的关键.
17、(1)见解析;(2)15°;(3)2+2.
【解析】
(1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由折叠的性质得到一对角相等,利用等角对等边即可得证;
(2)由(1)得到△ABB′为等边三角形,利用矩形的性质及等边三角形的内角为60°,即可求出所求角度数;
(3)连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,分别利用三角函数定义求出MF与AM,根据AM=BM,即BM+MF=BF即可求出.
【详解】
(1)证明:∵在Rt△ABC中,AC=2AB,
∴∠ACB=∠AC′B′=30°,∠BAC=60°,
由旋转可得:AB′=AB,∠B′AC′=∠BAC=60°,
∴∠EAC′=∠AC′B′=30°,
∴AE=C′E;
(2)解:由(1)得到△ABB′为等边三角形,
∴∠AB′B=60°,即∠BB'F=∠AB'B+∠AB'F=150°,
∵BB'=B'F,
∴∠FBB′=∠B'FB=15°;
(3)解:连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,
∴∠AFB′=45°,∠BB′F=150°,
∵BB′=B′F,
∴∠B′FB=∠B′BF=15°,
∴∠AFM=30°,∠ABF=45°,
在Rt△AMF中,AM=BM=AB•cs∠ABM=2=2,
在Rt△AMF中,MF=AM=2,
则BF=2+2.
此题参考四边形综合题,旋转的性质,矩形的性质,锐角三角函数定义,等边三角形、直角三角形的性质,熟练掌握旋转的性质是解题的关键.
18、(1)当t=或4时,线段为平行四边形的一边;(2)v的值是2或1
【解析】
(1)由线段为平行四边形的一边分两种情况,利用平行四边形的性质对边相等建立方程求解即可得到结论;
(2)由线段为菱形的一条对角线,用菱形的性质建立方程求解即可求出速度.
【详解】
(1)由线段为平行四边形的一边,分两种情况:
①当P、Q两点与A、B两点构成的四边形是平行四边形时,
∵AP∥BQ,
∴当AP=BQ时,四边形APQB是平行四边形,
此时t=22-3t,解得t=;
②当P、Q两点与C、D两点构成的四边形是平行四边形时,
∵PD∥QC,
∴当PD=QC时,四边形PQCD是平行四边形,
此时16-t=3t,解得t=4;
综上,当t=或4时,线段为平行四边形的一边;
(2)在Rt△ABP中,,AP=t
∴,
当PD=BQ=BP时,四边形PBQD是菱形,
∴,解得
∴当t=6,点Q的速度是每秒2个单位时四边形PBQD是菱形;
在Rt△ABQ中,,BQ=22-vt,
∴,
当AP=AQ=CQ时,四边形AQPC是菱形,
∴,解得,
∴当t=,点Q的速度是每秒1个单位时四边形AQPC是菱形,
综上,v的值是2或1.
此题考查图形与动点问题,平行四边形的性质,菱形的性质,勾股定理,正确理解图形的形状及性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y1>y2
【解析】
∵在中,,
∴在函数中,y随x的增大而减小.
又∵,
∴,即空格处应填“>”.
20、y=1x+1.
【解析】
把(-1,0)、(0,1)代入y=kx+b得到 ,然后解方程组可.
【详解】
解:根据题意得
,
解得,
所以直线的解析式为y=1x+1.
故答案为y=1x+1.
本题考查了待定系数法求一次函数的解析式:设一次函数的解析式为y=kx+b(k、b为常数,k≠0),然后把函数图象上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k、b,从而得到一次函数的解析式.
21、
【解析】
【分析】由矩形的性质可知∠D=90°,AD=BC=8,DC=AB,AD//BC,继而根据已知可得AB=AE=5,再利用勾股定理即可求得CE的长.
【详解】∵四边形ABCD是矩形,
∴∠D=90°,AD=BC=8,DC=AB,AD//BC,
∴∠AEB=∠EBC,
又∵∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AB=AE=5,
∴DC=5,DE=AD-AE=3,
∴CE=,
故答案为.
【点睛】本题考查了矩形的性质,勾股定理的应用,求出AB的长是解题的关键.
22、1.
【解析】
设P(0,b),
∵直线APB∥x轴,
∴A,B两点的纵坐标都为b,
而点A在反比例函数y=的图象上,
∴当y=b,x=-,即A点坐标为(-,b),
又∵点B在反比例函数y=的图象上,
∴当y=b,x=,即B点坐标为(,b),
∴AB=-(-)=,
∴S△ABC=•AB•OP=••b=1.
23、20%.
【解析】
本题的等量关系是2014年的收入×(1+增长率)2=2016年的收入,据此列出方程,再求解.
【详解】
解:根据题意,得,
即.
解得:,(不合题意,舍去)
故答案为20%.
本题考查了一元二次方程应用中求平均变化率的知识.解这类题的一般思路和方法是:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的一元二次方程方程为a(1±x)2=b.
二、解答题(本大题共3个小题,共30分)
24、(1)m=-2;(2) m ≠2时,y是x的一次函数
【解析】
(1)根据正比例函数的定义:一般地,形如y=kx(k是常数,k ≠0)的函数,叫做正比例函数,即可求解;
(2)根据一次函数的定义:一般地,形如y=kx+b(k,b是常数,k ≠0)的函数,叫做一次函数,即可求解.
【详解】
(1)当m2-4=0且m-2≠0时,y是x的正比例函数,
解得m=-2;
(2)当m-2≠0时,即m ≠2时,y是x的一次函数 .
本题考查正比例函数的定义,一次函数的定义.
25、(1)y=x2+2x﹣1;(2)当m=-时,PQ最长,最大值为;(1)R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
【解析】
(1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;
(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
(1)根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案
【详解】
解:(1)将A(1,0),B(﹣1,0)代入y=ax2+bx﹣1得:
解得:
∴抛物线的解析式为:y=x2+2x﹣1,
当x=﹣2时,y=(﹣2)2﹣4﹣1=﹣1,
∴D(﹣2,﹣1),
设直线AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣1)代入得:
解得:
∴直线AD的解析式为y=x﹣1;
因此直线AD的解析式为y=x﹣1,抛物线的解析式为:y=x2+2x﹣1.
(2)∵点P在直线AD上,Q抛物线上,P(m,n),
∴n=m﹣1 Q(m,m2+2m﹣1)
∴PQ的长l=(m﹣1)﹣(m2+2m﹣1)=﹣m2﹣m+2 (﹣2≤m≤1)
∴当m= 时,PQ的长l最大=﹣( )2﹣()+2= .
答:线段PQ的长度l与m的关系式为:l=﹣m2﹣m+2 (﹣2≤m≤1)
当m=时,PQ最长,最大值为.
(1)①若PQ为平行四边形的一边,则R一定在直线x=﹣2上,如图:
∵PQ的长为0<PQ≤的整数,
∴PQ=1或PQ=2,
当PQ=1时,则DR=1,此时,在点D上方有R1(﹣2,﹣2),在点D下方有R2(﹣2,﹣4);
当PQ=2时,则DR=2,此时,在点D上方有R1(﹣2,﹣1),在点D下方有R4(﹣2,﹣5);
②若PQ为平行四边形的一条对角线,则PQ与DR互相平分,此时R与点C重合,即R5(0,﹣1)
综上所述,符合条件的点R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
答:符合条件的点R共有5个,即:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).
此题考查一元二次方程-用待定系数法求解析式,二次函数的性质,平行四边形的性质,解题关键在于把已知点代入解析式
26、证明见解析.
【解析】
由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD//BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即得四边形BFDE是平行四边形.从而得出结论BE=DF,
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
∵AE=CF,
∴AD−AE=BC−CF,
∴ED=BF,
又∵AD//BC,
∴四边形BFDE是平行四边形,
∴BE=DF
此题考查了平行四边形的性质与判定,注意熟练掌握定理与性质是解决问题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
行规
学风
纪律
甲班
83
88
90
乙班
93
86
85
2024-2025学年江西省九江市名校数学九上开学调研试题【含答案】: 这是一份2024-2025学年江西省九江市名校数学九上开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江西省吉安市七校联盟九上数学开学综合测试试题【含答案】: 这是一份2024-2025学年江西省吉安市七校联盟九上数学开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江西省吉安市朝宗实验学校数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年江西省吉安市朝宗实验学校数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。